Global Optimization over Compact Domains

Seminaire Pascaline, LIP, Lyon

Georgy Scholten

MPI-CBG Dresden

Joint work with Mohab Safey El Din and Emmanuel Trélat Ongoing work with Alexander Demin

Partially supported by Grant FA8665-20-1-7029 of the EOARD-AFOSR

October 24, 2025

The Global Optimization Problem

8

The Global Optimization Problem

Problem Statement:

▶ Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$

Problem Statement:

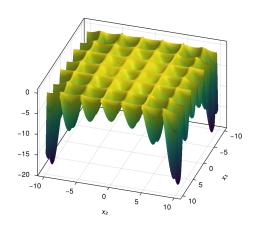
- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$
- ▶ **Goal:** Find all local minimizers of f on C

Find all $x^* \in \mathcal{C}$ s.t. $f(x^*) \leq f(x)$ for all x near x^*

8

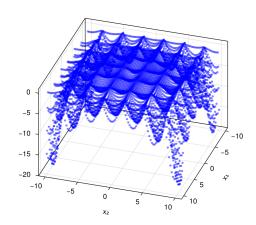
$$f(x,y) = -|(\sin(x)\cos(y)\exp(1-\sqrt{x^2+y^2}/\pi))|$$

$$f(x,y) = -|(\sin(x)\cos(y)\exp(1-\sqrt{x^2+y^2}/\pi))|$$



$$f(x,y) = -|(\sin(x)\cos(y)\exp(1-\sqrt{x^2+y^2}/\pi))|$$

$$f(x,y) = -|(\sin(x)\cos(y)\exp(1-\sqrt{x^2+y^2}/\pi))|$$



Critical Points Capture of The Hölder Table **Function**

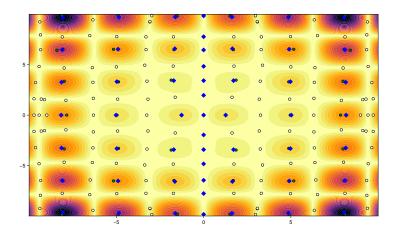


Figure: Level sets and critical points of $w_{18.8}$

8

Updated Problem Statement:

▶ Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1,1]^n$

Updated Problem Statement:

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$
- ► **Constraint:** The function *f* is only accessible through an *evaluation program*

8

Updated Problem Statement:

- ▶ Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$
- ► **Constraint:** The function *f* is only accessible through an *evaluation program*
 - ▶ We can evaluate f(x) at any point $x \in \mathcal{C}$

8

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$
- ► **Constraint:** The function *f* is only accessible through an *evaluation program*
 - ▶ We can evaluate f(x) at any point $x \in \mathcal{C}$
 - ► No analytical formula is available

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $C = [-1, 1]^n$
- **Constraint:** The function *f* is only accessible through an *evaluation* program
 - We can evaluate f(x) at any point $x \in \mathcal{C}$
 - No analytical formula is available
 - ► No derivatives can be computed directly

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $C = [-1, 1]^n$
- **Constraint:** The function f is only accessible through an evaluation program
 - We can evaluate f(x) at any point $x \in \mathcal{C}$
 - No analytical formula is available
 - No derivatives can be computed directly
- **Goal:** Find all local minimizers of f on \mathcal{C}

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$
- ► **Constraint:** The function *f* is only accessible through an *evaluation program*
 - ▶ We can evaluate f(x) at any point $x \in \mathcal{C}$
 - ► No analytical formula is available
 - ► No derivatives can be computed directly
- ▶ **Goal:** Find all local minimizers of f on \mathcal{C} ×

Updated Problem Statement:

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $\mathcal{C} = [-1, 1]^n$
- ► **Constraint:** The function *f* is only accessible through an *evaluation program*
 - ▶ We can evaluate f(x) at any point $x \in \mathcal{C}$
 - ► No analytical formula is available
 - ► No derivatives can be computed directly
- ▶ **Goal:** Find all local minimizers of f on \mathcal{C} ×

We need more assumptions on f:

► Let spec(f) denote eigenvalues of the Hessian of f at all local minimizers in interior of C.

Updated Problem Statement:

- Let $f: \mathcal{C} \to \mathbb{R}$ be a continuous function on a compact domain $C = [-1, 1]^n$
- **Constraint:** The function *f* is only accessible through an *evaluation* program
 - We can evaluate f(x) at any point $x \in \mathcal{C}$
 - No analytical formula is available
 - No derivatives can be computed directly
- ► **Goal:** Find all local minimizers of *f* on C

We need more assumptions on f:

- Let spec(f) denote eigenvalues of the Hessian of f at all local minimizers in interior of C.
- For $\lambda > 0$, $\rho > 0$ define

$$\mathscr{C}^{m,\rho}_{\lambda}(\mathcal{C}) = \{f \in \mathscr{M}^m(\mathcal{C}) \mid \min \operatorname{spec}(f) \geq \lambda, \max_{x \in \mathcal{C}} \|d^j f(x)\| \leq \rho, j \leq m \}$$

where $\mathcal{M}^m(\mathcal{C}) = m$ -times diff. Morse functions on \mathcal{C}

To compute all local minimizers of f on \mathbb{C} , we employ a three-step approach:

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

1. Polynomial Approximation Step

To compute all local minimizers of f on \mathbb{C} , we employ a three-step approach:

1. Polynomial Approximation Step

generate a tensorized grid of evaluation points from Chebyshev measure

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

1. Polynomial Approximation Step

- generate a tensorized grid of evaluation points from Chebyshev measure
- \triangleright Create polynomial approximant $w_{d,S}$ using discrete least-squares

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

- 1. Polynomial Approximation Step
 - generate a tensorized grid of evaluation points from Chebyshev measure
 - ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
 - √ Good numerical stability over rectangular domains

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

- 1. Polynomial Approximation Step
 - generate a tensorized grid of evaluation points from Chebyshev measure
 - ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
 - √ Good numerical stability over rectangular domains
 - √ Control quality via regularity assumptions

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

- 1. Polynomial Approximation Step
 - generate a tensorized grid of evaluation points from Chebyshev measure
 - ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
 - √ Good numerical stability over rectangular domains
 - √ Control quality via regularity assumptions
- 2. Algebraic Step

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

1. Polynomial Approximation Step

- generate a tensorized grid of evaluation points from Chebyshev measure
- ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
- √ Good numerical stability over rectangular domains
- √ Control quality via regularity assumptions

2. Algebraic Step

Compute crit(w) using algebraic methods

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

1. Polynomial Approximation Step

- generate a tensorized grid of evaluation points from Chebyshev measure
- ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
- √ Good numerical stability over rectangular domains
- √ Control quality via regularity assumptions

2. Algebraic Step

- Compute crit(w) using algebraic methods
- Ensure all critical points are captured

7 / 35

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

1. Polynomial Approximation Step

- generate a tensorized grid of evaluation points from Chebyshev measure
- ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
- √ Good numerical stability over rectangular domains
- √ Control quality via regularity assumptions

2. Algebraic Step

- Compute crit(w) using algebraic methods
- Ensure all critical points are captured

3. Local Optimization

To compute all local minimizers of f on \mathcal{C} , we employ a three-step approach:

1. Polynomial Approximation Step

- generate a tensorized grid of evaluation points from Chebyshev measure
- ightharpoonup Create polynomial approximant $w_{d,S}$ using discrete least-squares
- √ Good numerical stability over rectangular domains
- √ Control quality via regularity assumptions

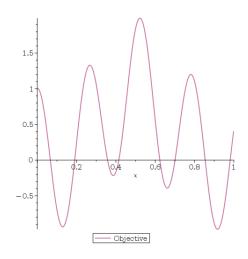
2. Algebraic Step

- Compute crit(w) using algebraic methods
- Ensure all critical points are captured

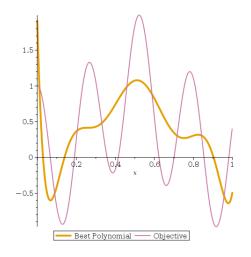
3. Local Optimization

Initiate local optimization methods at the computed points

L^{∞} vs L^2 Polynomial Approximant

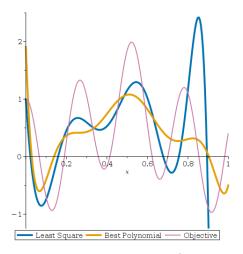


L^{∞} vs L^2 Polynomial Approximant



$$\|f\|_{\mathcal{L}^{\infty}} = \max_{x \in \mathcal{C}} |f(x)|. \tag{1}$$

L^{∞} vs L^2 Polynomial Approximant



$$||f||_{\mathcal{L}^2} = \left(\int_{\mathcal{C}} f(x)^2 d\mu\right)^{\frac{1}{2}}.$$
 (2)

Chebyshev Polynomials

¹Keaton J. Burns et al. "Dedalus: A flexible framework for numerical simulations with spectral methods". *Phys. Rev. Res.* 2 (2 Apr. 2020), p. 023068. DOI: 10.1103/PhysRevResearch.2.023068. URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.023068.

Chebyshev Polynomials

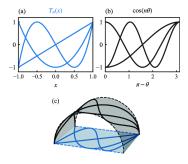


Figure: Dedalus¹

¹Keaton J. Burns et al. "Dedalus: A flexible framework for numerical simulations with spectral methods". *Phys. Rev. Res.* 2 (2 Apr. 2020), p. 023068. DOI: 10.1103/PhysRevResearch.2.023068. URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.023068.

12 / 35

Orthogonality:

$$\int_{\mathcal{C}} T_m(x) T_n(x) \mathrm{d}\mu = \gamma_n \delta_{mn}$$

where $\gamma_n > 0$

^aZaïneb Bel-Afia, Chiara Meroni, and Simon Telen. *Chebyshev Varieties*. 2024. arXiv: 2401.12140 [math.AG]. URL: https://arxiv.org/abs/2401.12140.

Orthogonality:

$$\int_{\mathcal{C}} T_m(x) T_n(x) \mathrm{d}\mu = \gamma_n \delta_{mn}$$

where $\gamma_n > 0$

Well-suited for solving Least Squares

^aZaïneb Bel-Afia, Chiara Meroni, and Simon Telen. *Chebyshev Varieties*. 2024. arXiv: 2401.12140 [math.AG]. URL: https://arxiv.org/abs/2401.12140.

Orthogonality:

$$\int_{\mathcal{C}} T_m(x) T_n(x) \mathrm{d}\mu = \gamma_n \delta_{mn}$$

where $\gamma_n > 0$

- Well-suited for solving Least Squares
- Chebyshev Varieties^a:

$$x_1^{\nu_1} \dots x_n^{\nu_n} \to T_{\nu_1}(x_1) \dots T_{\nu_n}(x_n)$$

^aZaïneb Bel-Afia, Chiara Meroni, and Simon Telen. *Chebyshev Varieties*. 2024. arXiv: 2401.12140 [math.AG]. URL: https://arxiv.org/abs/2401.12140.

Orthogonality:

$$\int_{\mathcal{C}} T_m(x) T_n(x) \mathrm{d}\mu = \gamma_n \delta_{mn}$$

where $\gamma_n > 0$

- Well-suited for solving Least Squares
- Chebyshev Varieties^a:

$$x_1^{\nu_1} \dots x_n^{\nu_n} \to T_{\nu_1}(x_1) \dots T_{\nu_n}(x_n)$$

^aZaïneb Bel-Afia, Chiara Meroni, and Simon Telen. *Chebyshev Varieties*. 2024. arXiv: 2401.12140 [math.AG]. URL: https://arxiv.org/abs/2401.12140.

► Orthogonality:

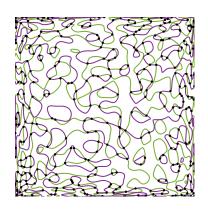
$$\int_{\mathcal{C}} T_m(x) T_n(x) \mathrm{d}\mu = \gamma_n \delta_{mn}$$

where $\gamma_n > 0$

- Well-suited for solving Least Squares
- Chebyshev Varieties^a:

$$x_1^{\nu_1} \dots x_n^{\nu_n} \to T_{\nu_1}(x_1) \dots T_{\nu_n}(x_n)$$

^aZaïneb Bel-Afia, Chiara Meroni, and Simon Telen. *Chebyshev Varieties*. 2024. arXiv: 2401.12140 [math.AG]. URL: https://arxiv.org/abs/2401.12140.



ρ -Regularity

Let $f \in \mathcal{C}_{\lambda}^{m,\rho}(\mathcal{C})$, meaning:

$$\max_{x \in \mathcal{C}} \|d^{j} f(x)\| \le \rho \quad \text{for all } j \le m$$

ρ -Regularity

Let $f \in \mathscr{C}_{1}^{m,\rho}(\mathcal{C})$, meaning:

$$\max_{x \in \mathcal{C}} \|d^j f(x)\| \le \rho \quad \text{ for all } j \le m$$

Jackson's Theorem

There exists a constant $C_{n,m} > 0$ such that:

$$\min_{p \in \mathcal{P}_{n,d}} \max_{x \in \mathcal{C}} |f(x) - p(x)| \le C_{n,m} \frac{\rho}{d^{m-1}}$$

ρ -Regularity

Let $f \in \mathscr{C}_{1}^{m,\rho}(\mathcal{C})$, meaning:

$$\max_{x \in \mathcal{C}} \|d^{j}f(x)\| \le \rho \quad \text{ for all } j \le m$$

Jackson's Theorem

There exists a constant $C_{n,m} > 0$ such that:

$$\min_{p \in \mathcal{P}_{n,d}} \max_{x \in \mathcal{C}} |f(x) - p(x)| \le C_{n,m} \frac{\rho}{d^{m-1}}$$

▶ Error decreases as $O(d^{-(m-1)})$ with polynomial degree d

ρ -Regularity

Let $f \in \mathscr{C}_{1}^{m,\rho}(\mathcal{C})$, meaning:

$$\max_{x \in \mathcal{C}} \|d^{j}f(x)\| \le \rho \quad \text{ for all } j \le m$$

Jackson's Theorem

There exists a constant $C_{n,m} > 0$ such that:

$$\min_{p \in \mathcal{P}_{n,d}} \max_{x \in \mathcal{C}} |f(x) - p(x)| \le C_{n,m} \frac{\rho}{d^{m-1}}$$

- ▶ Error decreases as $O(d^{-(m-1)})$ with polynomial degree d
- ▶ Higher smoothness $m \Rightarrow$ faster convergence rate

ρ -Regularity

Let $f \in \mathscr{C}_{1}^{m,\rho}(\mathcal{C})$, meaning:

$$\max_{x \in \mathcal{C}} \|d^{j}f(x)\| \le \rho \quad \text{ for all } j \le m$$

Jackson's Theorem

There exists a constant $C_{n,m} > 0$ such that:

$$\min_{p \in \mathcal{P}_{n,d}} \max_{x \in \mathcal{C}} |f(x) - p(x)| \le C_{n,m} \frac{\rho}{d^{m-1}}$$

- ▶ Error decreases as $O(d^{-(m-1)})$ with polynomial degree d
- Higher smoothness $m \Rightarrow$ faster convergence rate
- \triangleright Constant $C_{n,m}$ depends on dimension n and smoothness m

13 / 35

Let $f \in \mathcal{C}^{m,\rho}_{\lambda}(\mathcal{C})$ with $m \ge \max(3,\beta n+1)$, where $\beta = \frac{\ln(3)}{2\ln(2)}$. Let r > 0 satisfy $\rho r \le 3\lambda$, $\alpha \in (0,1)$ and $C_{n,m}$ the Jackson constant.

Let $f \in \mathcal{C}_{\mathfrak{p}}^{m,\rho}(\mathcal{C})$ with $m \geq \max(3,\beta n+1)$, where $\beta = \frac{\ln(3)}{2\ln(2)}$. Let r > 0 satisfy $\rho r \leq 3\lambda$, $\alpha \in (0,1)$ and $C_{n,m}$ the Jackson constant. Given any $\delta \in (0,1)$, set

$$A_1 = 16 \left(\frac{1}{\pi^n} + \frac{2}{1 - \delta} \right) \frac{C_{n,m}^2 \rho^2}{(\pi e)^n} \quad \text{and} \quad A_2 = \frac{16(1 + \delta)}{(\pi e)^n (1 - \delta)^2} \left(8\delta^2 (1 - \delta)^4 + 4 \right).$$

Let $f \in \mathcal{C}_{1}^{m,\rho}(\mathcal{C})$ with $m \geq \max(3, \beta n + 1)$, where $\beta = \frac{\ln(3)}{2\ln(2)}$. Let r > 0 satisfy $\rho r \leq 3\lambda$, $\alpha \in (0,1)$ and $C_{n,m}$ the Jackson constant. Given any $\delta \in (0,1)$, set

$$A_1 = 16 \left(\frac{1}{\pi^n} + \frac{2}{1 - \delta} \right) \frac{C_{n,m}^2 \rho^2}{(\pi e)^n} \quad \text{and} \quad A_2 = \frac{16(1 + \delta)}{(\pi e)^n (1 - \delta)^2} \left(8\delta^2 (1 - \delta)^4 + 4 \right).$$

If $d \in \mathbb{N}$ satisfies the **degree condition**:

$$\left(\frac{A_1}{d^{2m-2}}+A_2\varepsilon^2\right)d^{2\beta n}\leq \lambda^2 r^4,$$

Let $f \in \mathcal{C}_{1}^{m,\rho}(\mathcal{C})$ with $m \geq \max(3, \beta n + 1)$, where $\beta = \frac{\ln(3)}{2\ln(2)}$. Let r > 0 satisfy $\rho r \leq 3\lambda$, $\alpha \in (0,1)$ and $C_{n,m}$ the Jackson constant. Given any $\delta \in (0,1)$, set

$$A_1 = 16 \left(\frac{1}{\pi^n} + \frac{2}{1 - \delta} \right) \frac{C_{n,m}^2 \rho^2}{(\pi e)^n} \quad \text{and} \quad A_2 = \frac{16(1 + \delta)}{(\pi e)^n (1 - \delta)^2} \left(8\delta^2 (1 - \delta)^4 + 4 \right).$$

If $d \in \mathbb{N}$ satisfies the **degree condition**:

$$\left(\frac{A_1}{d^{2m-2}} + A_2 \varepsilon^2\right) d^{2\beta n} \le \lambda^2 r^4,$$

then with a large enough sample set S chosen from the Chebyshev measure:

the DLSP approximant $w_{d,S}$ captures all local minimizers at precision r with probability $\geq 1 - \alpha$

Let $f \in \mathcal{C}_{1}^{m,\rho}(\mathcal{C})$ with $m \geq \max(3, \beta n + 1)$, where $\beta = \frac{\ln(3)}{2\ln(2)}$.

Let r > 0 satisfy $\rho r \leq 3\lambda$, $\alpha \in (0,1)$ and $C_{n,m}$ the Jackson constant.

Given any $\delta \in (0,1)$, set

$$A_1 = 16 \left(\frac{1}{\pi^n} + \frac{2}{1 - \delta} \right) \frac{C_{n,m}^2 \rho^2}{(\pi e)^n} \quad \text{and} \quad A_2 = \frac{16(1 + \delta)}{(\pi e)^n (1 - \delta)^2} \left(8\delta^2 (1 - \delta)^4 + 4 \right).$$

If $d \in \mathbb{N}$ satisfies the **degree condition**:

$$\left(\frac{A_1}{d^{2m-2}} + A_2 \varepsilon^2\right) d^{2\beta n} \le \lambda^2 r^4,$$

then with a large enough sample set S chosen from the Chebyshev measure:

the DLSP approximant $w_{d,S}$ captures all local minimizers at precision r with probability $\geq 1 - \alpha$

Constants dependency:

 \triangleright A_1 : dimension n, smoothness m, regularity ρ , parameter δ

 \triangleright A_2 : dimension n, parameter δ

14 / 35

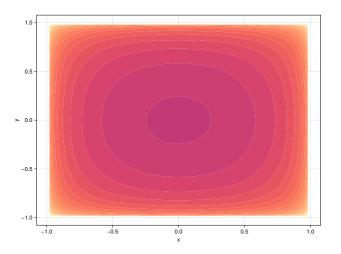


Figure: probability density of μ .

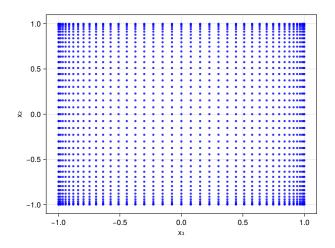


Figure: Discretization of μ .

17 / 35

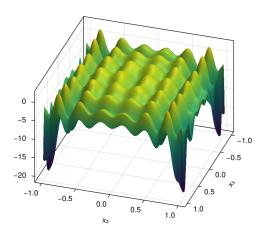


Figure: w₁₈



Figure: reduced sample set S.

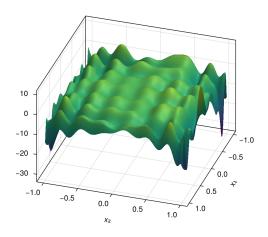


Figure: $w_{18,S}$.

Probabilistic Bounds

²Giovanni Migliorati, Fabio Nobile, and Raúl Tempone. "Convergence estimates in probability and in expectation for discrete least-squares with noisy evaluations at random points". *Journal of Multivariate Analysis* 142 (2015), pp. 167–182. ISSN: 0047-259X. DOI: https://doi.org/10.1016/j.jmva.2015.08.009. URL: https://www.sciencedirect.com/science/article/pii/S0047259X15001931.

Theorem: 2 if the number of samples k satisfies

$$\frac{\binom{n+d}{n}^{\frac{\ln(3)}{2\ln(2)}}}{\delta + (1-\delta)\ln(1-\delta)} \le \frac{k}{\ln(k) + \ln(6\alpha^{-1})},\tag{3}$$

then with probability at least $1-\alpha$, we have

$$\| w_{d,\mathcal{S}} - f \|_{\mathcal{L}^2}^2 \le \left(1 + \frac{C(\delta)}{\alpha \ln(6k\alpha^{-1})} \right) e_d(f)^2, \tag{4}$$

where

$$C(\delta) = \frac{4\left(\delta + (1 - \delta)\ln(1 - \delta)\right)}{(1 - \delta)^2},\tag{5}$$

²Giovanni Migliorati, Fabio Nobile, and Raúl Tempone. "Convergence estimates in probability and in expectation for discrete least-squares with noisy evaluations at random points". Journal of Multivariate Analysis 142 (2015), pp. 167-182. ISSN: 0047-259X. DOI: https://doi.org/10.1016/j.jmva.2015.08.009. URL: https://www.sciencedirect.com/science/article/pii/S0047259X15001931.

- Converting to standard monomial basis
- Computing partial derivatives
- Computing critical points:
 - 1. Msolve

8

- Converting to standard monomial basis
- ► Computing partial derivatives
- Computing critical points:
 - 1. Msolve
 - 2. HomotopyContinuation.jl

28

- Converting to standard monomial basis
- ► Computing partial derivatives
- Computing critical points:
 - 1. Msolve
 - 2. HomotopyContinuation.jl
 - 3. Bertini Real

- Converting to standard monomial basis
- ► Computing partial derivatives
- Computing critical points:
 - 1. Msolve
 - 2. HomotopyContinuation.jl
 - 3. Bertini Real
 - 4. HypersurfaceRegions.jl (?)

8

Convergence in L^2

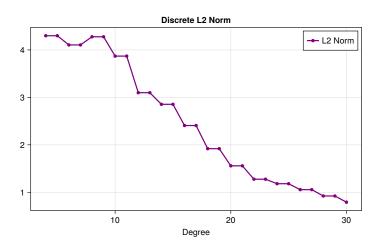


Figure: Error in \mathcal{L}^2 -norm of the approximant

<u>3</u> 22 / 35

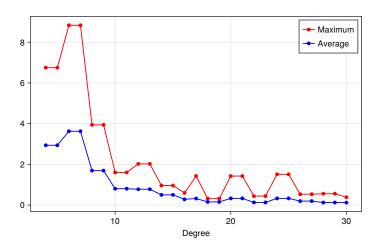


Figure: Distance from local minimizers to nearest critical point.

⊗ 23 / 35

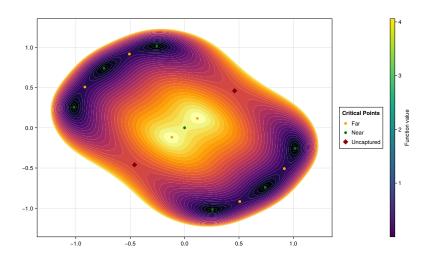


Figure: Deuflhard function

8

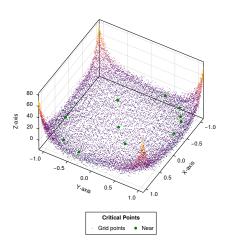


Figure: Noisy Deuflhard function

⊗ 25 / 35

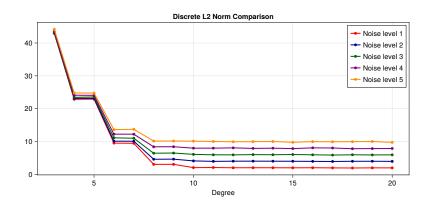


Figure: Noisy Deuflhard L2-norm approximation

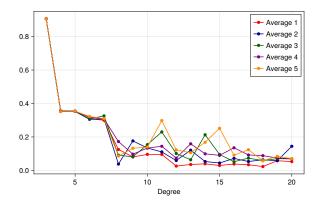


Figure: Noisy Deuflhard convergence of critical points

3D Function Example

$$f(x, y, z) = e^{\sin(50x_1)} + \sin(60e^{x_2})\sin(60x_3) + \sin(70\sin(x_1))\cos(10x_3) + \sin(\sin(80x_2)) - \sin(10(x_1 + x_3)) + \frac{x_1^2 + x_2^2 + x_3^2}{4}$$
 (6)

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} x'(t) = f(x(t), u(t), \mu), \\ y(t) = g(x(t), u(t), \mu), \\ x(0) = x_0, \end{cases}$$

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

 \triangleright x(t): state variables

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

- \triangleright x(t): state variables
- \triangleright y(t): output variables (observables)

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

- \triangleright x(t): state variables
- ▶ **y**(t): output variables (observables)
- $\triangleright \mu$: scalar parameters (to be estimated)

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

- \triangleright x(t): state variables
- ▶ **y**(t): output variables (observables)
- \blacktriangleright μ : scalar parameters (to be estimated)
- \triangleright u(t): input variables (control)

8

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

- \triangleright x(t): state variables
- y(t): output variables (observables)
- $\triangleright \mu$: scalar parameters (to be estimated)
- $\boldsymbol{u}(t)$: input variables (control)
- f and g: rational functions in x(t), μ , u(t)

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

- \triangleright x(t): state variables
- y(t): output variables (observables)
- $\triangleright \mu$: scalar parameters (to be estimated)
- $\boldsymbol{u}(t)$: input variables (control)
- f and g: rational functions in x(t), μ , u(t)

Consider a system of ODEs in the state-space form:

$$\Sigma := \begin{cases} \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\mu}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

where:

- \triangleright x(t): state variables
- y(t): output variables (observables)
- $\triangleright \mu$: scalar parameters (to be estimated)
- $\boldsymbol{u}(t)$: input variables (control)
- f and g: rational functions in x(t), μ , u(t)

Given data: $D = ((t_1, y_1), \dots, (t_n, y_n))$, where y_i is measured at time t_i

Let $\boldsymbol{\mu}$ be the parameters to be estimated.

8

Let μ be the parameters to be estimated. Take time points $\{t_1, t_2, \dots, t_N\}$ and let $\mu \in \mathbb{R}^n$

$$f(\boldsymbol{\mu}) = \sum_{i=1}^{N} \left(\boldsymbol{y}(t_i; \boldsymbol{\mu}) - \boldsymbol{y}_{\mathsf{target}}(t_i) \right)^2$$

where $y(t_i; \mu)$ is the computed response at time t_i for parameters μ , and $\mathbf{y}_{\text{target}}(t_i)$ is the target response.

Let μ be the parameters to be estimated. Take time points $\{t_1, t_2, \dots, t_N\}$ and let $\mu \in \mathbb{R}^n$

$$f(\boldsymbol{\mu}) = \sum_{i=1}^{N} \left(\boldsymbol{y}(t_i; \boldsymbol{\mu}) - \boldsymbol{y}_{\mathsf{target}}(t_i) \right)^2$$

where $y(t_i; \mu)$ is the computed response at time t_i for parameters μ , and $\mathbf{y}_{\text{target}}(t_i)$ is the target response.

Take a sample set $S \in \mathbb{R}^n$ and construct

$$w_d := \underset{p \in \mathscr{P}_{n,d}}{\operatorname{argmin}} \sum_{s \in S} (p(s) - f(s))^2$$

Let μ be the parameters to be estimated. Take time points $\{t_1, t_2, \dots, t_N\}$ and let $\mu \in \mathbb{R}^n$

$$f(\boldsymbol{\mu}) = \sum_{i=1}^{N} \left(\boldsymbol{y}(t_i; \boldsymbol{\mu}) - \boldsymbol{y}_{\mathsf{target}}(t_i) \right)^2$$

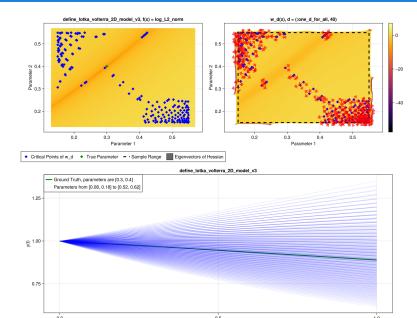
where $y(t_i; \mu)$ is the computed response at time t_i for parameters μ , and $\mathbf{y}_{\text{target}}(t_i)$ is the target response.

Take a sample set $S \in \mathbb{R}^n$ and construct

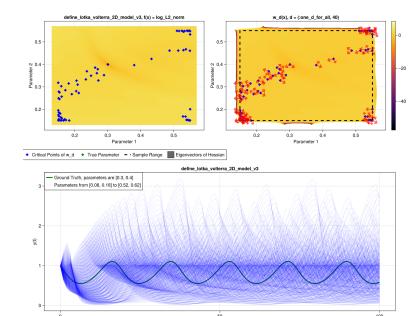
$$w_d := \underset{p \in \mathscr{P}_{n,d}}{\operatorname{argmin}} \sum_{s \in S} (p(s) - f(s))^2$$

The recovered critical points serve as initial guesses for local optimization methods.

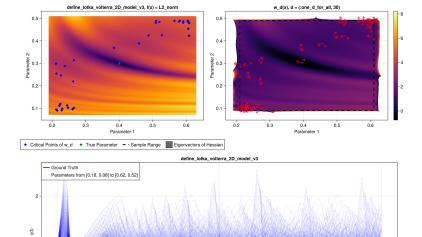
Parameter Estimation Lotka-Volterra: (t=1)



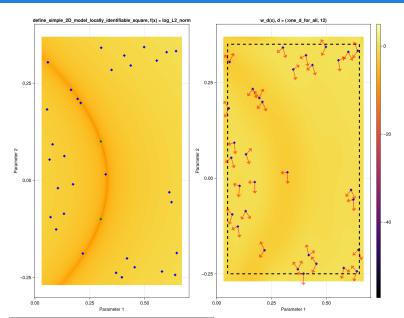
Parameter Estimation Lotka-Volterra (t=100)



Parameter Estimation Lotka-Volterra (t=100)



Locally Identifiable Model



Thank You! I

- ▶ Matthieu Dolbeault, David Krieg, and Mario Ullrich. "A sharp upper bound for sampling numbers in £2". Applied and Computational Harmonic Analysis 63 (2023), pp. 113–134. ISSN: 1063-5203. DOI: https://doi.org/10.1016/j.acha.2022.12.001. URL: https://www.sciencedirect.com/science/article/pii/S1063520322000999
- ► Albert Cohen and Giovanni Migliorati. "Optimal weighted least-squares methods". en. *The SMAI Journal of computational mathematics* 3 (2017), pp. 181–203. DOI: 10.5802/smai-jcm.24. URL: https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.24/
- ► Mohab Safey El Din, Georgy Scholten, and Emmanuel Trélat.

 "Probabilistic algorithm for computing all local minimizers of Morse functions on a compact domain". working paper or preprint. 2025. URL: https://hal.sorbonne-universite.fr/hal-05160251