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Introduction Georgy Scholten

The Global Optimization Problem

Problem Statement:

▶ Let f : C → R be a continuous function on a compact domain
C = [−1, 1]n

▶ Goal: Find all local minimizers of f on C

Find all x★ ∈ C s.t. f (x★) ≤ f (x ) for all x near x★
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Introduction Georgy Scholten

Motivational Example: The Hölder Table Function

f (x , y ) = −|(sin(x ) cos(y ) exp(1 −
√︁

x2 + y2/𝜋)) |
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Introduction Georgy Scholten

Critical Points Capture of The Hölder Table
Function
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Figure: Level sets and critical points of w18,S
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Introduction Georgy Scholten

The Global Optimization Problem (Practical
Setting)

Updated Problem Statement:

▶ Let f : C → R be a continuous function on a compact domain
C = [−1, 1]n

▶ Constraint: The function f is only accessible through an evaluation
program

▶ We can evaluate f (x ) at any point x ∈ C
▶ No analytical formula is available
▶ No derivatives can be computed directly

▶ Goal: Find all local minimizers of f on C ×

We need more assumptions on f :

▶ Let spec(f ) denote eigenvalues of the Hessian of f at all local
minimizers in interior of C

▶ For 𝜆 > 0, 𝜌 > 0 define

𝒞
m,𝜌

𝜆
(C) = {f ∈ ℳ

m (C) | min spec(f ) ≥ 𝜆,max
x ∈C

∥d j f (x )∥ ≤ 𝜌, j ≤ m}

where ℳ
m (C) = m-times diff. Morse functions on C

6 / 35
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Global Methods Georgy Scholten

Overall Methodology: Three-Step Process

To compute all local minimizers of f on C, we employ a three-step
approach:

1. Polynomial Approximation Step

▶ generate a tensorized grid of evaluation points from Chebyshev
measure

▶ Create polynomial approximant wd ,S using discrete least-squares
✓ Good numerical stability over rectangular domains
✓ Control quality via regularity assumptions

2. Algebraic Step

▶ Compute crit(w ) using algebraic methods
▶ Ensure all critical points are captured

3. Local Optimization

▶ Initiate local optimization methods at the computed points
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Global Methods Georgy Scholten

L∞ vs L2 Polynomial Approximant
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Global Methods Georgy Scholten

L∞ vs L2 Polynomial Approximant

∥ f ∥L∞ = max
x ∈C

|f (x ) |. (1)
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Global Methods Georgy Scholten

L∞ vs L2 Polynomial Approximant

∥ f ∥L2 =

(∫
C

f (x )2d𝜇
) 1

2
. (2)
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Global Methods Georgy Scholten

Chebyshev Polynomials

T0(x) = Re{z0} = 1

T1(x) = Re{z1} = 1

2
(ejθ + e−jθ) = cos(θ) = x

T2(x) =
1

2
(ej2θ + e−j2θ) = cos(2θ)

but also =
1

2
(z2 + 2 + z−2)︸ ︷︷ ︸
perfect square

−1 =
(√1

2
(z + z−1)

)2
− 1 =

( 2√
2

)2

︸ ︷︷ ︸
2

z + z−1

2︸ ︷︷ ︸
cos(θ)

−1 = 2x2 − 1

T3(x) =
1

2
(ej3θ + e−j3θ) = cos(3θ)

but also =
1

2
(z + z−1)3 − 3

2
(z + z−1) = 4x3 − 3x

...

It turns out there is a recurrent pattern:

Tk+1 =
1

2
(zk+1 + z−(k+1)) =

1

2
(zk + z−k)(z + z−1)− 1

2
(zk−1 + z−(k−1)) = 2xTk(x)− Tk−1(x)

Due to the relationship between θ and x on their respective domains, you can think of these polynomials as cosine
waves “wrapped around a cylinder and viewed from the side.”[20]

Relationship of Chebyshev domain and Fourier Domain, from [21]. Notice
the cosines are horizontally flipped. The authors use n instead of k, which is
common for Chebyshev polynomials (e.g. [20]), but I prefer k to enumerate
basis modes, for consistency.

Essentially, on the domain [−1, 1] each of these polynomials has ever more wiggles in the range [−1, 1], and they
perfectly coincide with the shadow of a horizontally-reversed 2π-periodic cosine in the domain [0, π]. When we use
cos(θ) to sample a function instead of x, we’re effectively moving, horizontally flipping, and warping the function (by
expanding near the edges and compressing in the middle) in to the new θ domain.

We can reconstruct a function using the different variables/basis formulations, and as long as our variables are
related as in Equation 6, these reconstructions are equivalent :

y(x) =
N∑

k=0

akTk(x) ; y(z) =
N∑

k=0

ak
1

2
(zk + z−k) ; y(θ) =

N∑

k=0

ak cos(kθ) (7)

Note the set of {ak} is for k ∈ {0, ...N} and therefore has cardinality N + 1.

10

Figure: Dedalus1

1Keaton J. Burns et al. “Dedalus: A flexible framework for numerical simulations
with spectral methods”. Phys. Rev. Res. 2 (2 Apr. 2020), p. 023068. doi:
10.1103/PhysRevResearch.2.023068. url:
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023068.
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Global Methods Georgy Scholten

Chebyshev Polynomials

▶ Orthogonality:∫
C

Tm (x )Tn (x )d𝜇 = 𝛾n𝛿mn

where 𝛾n > 0
▶ Well-suited for solving Least

Squares
▶ Chebyshev Varietiesa:

x 𝜈1
1 . . . x 𝜈n

n → T𝜈1 (x1) . . .T𝜈n (xn)

aZaïneb Bel-Afia, Chiara Meroni, and
Simon Telen. Chebyshev Varieties. 2024.
arXiv: 2401.12140 [math.AG]. url:
https://arxiv.org/abs/2401.12140.

Figure 10: The curves from Example 6.4 in [−1, 1]2.

6.3 Solving cosine equations

We use the results from Section 5 to solve the system of equations

ci,0 +
n∑

j=1

ci,j cos(aj · u) = 0, i = 1, . . . ,m, (23)

via homotopy continuation methods [25]. Changing coordinates v = e
√−1u, we obtain

fi(v;C, c0) = ci,0 +
n∑

j=1

ci,j

(
vaj + v−aj

2

)
= 0, i = 1, . . . ,m. (24)

We interpret the coefficients C, c0 as complex parameters, and apply the method of mon-
odromy loops to solve (24) for specific values C1 ∈ Rm×n, c01 ∈ Rm of these parameters [10].
We explain how this works in a nutshell. Pick a random v0 ∈ (C\{0})m, and find parameters
C0 ∈ Cm,n, c00 ∈ Cm for which fi(v0;C0, c00) = 0, i = 1, . . . ,m. This is done by solving a
linear system of equations. Next, use monodromy loops in the space of parameters C, c0
to compute all solutions of fi(v;C0, c00) = 0, i = 1, . . . ,m. Since we are interested in the
solutions for the parameter values C1, c01, we set up the homotopy

fi ( v ; C0τ + C1(1− τ), c00τ + c01(1− τ)) = 0, i = 1, . . . ,m, τ ∈ [0, 1]. (25)
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Jackson’s Approximation Theorem

𝜌-Regularity
Let f ∈ 𝒞

m,𝜌

𝜆
(C), meaning:

max
x ∈C

∥d j f (x )∥ ≤ 𝜌 for all j ≤ m

Jackson’s Theorem
There exists a constant Cn,m > 0 such that:

min
p∈𝒫n,d

max
x ∈C

|f (x ) − p(x ) | ≤ Cn,m
𝜌

dm−1

▶ Error decreases as O(d−(m−1) ) with polynomial degree d
▶ Higher smoothness m ⇒ faster convergence rate
▶ Constant Cn,m depends on dimension n and smoothness m
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Main Theorem [Safey El Din, S., Trélat]

Let f ∈ 𝒞
m,𝜌

𝜆
(C) with m ≥ max(3, 𝛽n + 1), where 𝛽 =

ln(3)
2 ln(2) .

Let r > 0 satisfy 𝜌r ≤ 3𝜆, 𝛼 ∈ (0, 1) and Cn,m the Jackson constant.
Given any 𝛿 ∈ (0, 1), set

A1 = 16
(

1
𝜋n + 2

1 − 𝛿

) C2
n,m𝜌2

(𝜋e)n and A2 =
16(1 + 𝛿)

(𝜋e)n (1 − 𝛿)2

(
8𝛿2 (1 − 𝛿)4 + 4

)
.

If d ∈ N satisfies the degree condition:(
A1

d2m−2 + A2𝜀
2
)

d2𝛽n ≤ 𝜆2r4,

then with a large enough sample set S chosen from the Chebyshev
measure:

the DLSP approximant wd ,S captures all local minimizers
at precision r with probability ≥ 1 − 𝛼

Constants dependency:
▶ A1: dimension n, smoothness m, regularity 𝜌, parameter 𝛿
▶ A2: dimension n, parameter 𝛿
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Probabilistic Least Squares Polynomials
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Probabilistic Least Squares Polynomials

Figure: w18
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Probabilistic Least Squares Polynomials

Figure: w18,S.
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Global Methods Georgy Scholten

Probabilistic Bounds

Theorem:2 if the number of samples k satisfies(n+d
n
) ln(3)

2 ln(2)

𝛿 + (1 − 𝛿) ln(1 − 𝛿) ≤ k
ln(k) + ln(6𝛼−1)

, (3)

then with probability at least 1 − 𝛼, we have

∥ wd ,S − f ∥2
L2 ≤

(
1 + C (𝛿)

𝛼 ln(6k𝛼−1)

)
ed (f )2, (4)

where
C (𝛿) = 4 (𝛿 + (1 − 𝛿) ln(1 − 𝛿))

(1 − 𝛿)2 , (5)

2Giovanni Migliorati, Fabio Nobile, and Raúl Tempone. “Convergence estimates in
probability and in expectation for discrete least-squares with noisy evaluations at
random points”. Journal of Multivariate Analysis 142 (2015), pp. 167–182. issn:
0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.08.009. url:
https://www.sciencedirect.com/science/article/pii/S0047259X15001931.
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Global Methods Georgy Scholten

Practical Considerations

▶ Converting to standard monomial basis
▶ Computing partial derivatives
▶ Computing critical points:

1. Msolve

2. HomotopyContinuation.jl
3. Bertini Real
4. HypersurfaceRegions.jl (?)
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Convergence in L2
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Convergence of Local Minimizers
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Figure: Distance from local minimizers to nearest critical point.
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Tolerance to Noise
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Tolerance to Noise
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Tolerance to Noise
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3D Function Example

f (x , y , z) = esin(50x1 ) + sin(60ex2 ) sin(60x3) + sin(70 sin(x1)) cos(10x3)

+ sin(sin(80x2)) − sin(10(x1 + x3)) +
x2

1 + x2
2 + x2

3
4 (6)
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Application: Parameter Estimation for ODEs Georgy Scholten

ODE System: Parameter Estimation Problem

Consider a system of ODEs in the state-space form:

Σ :=


x ′ (t) = f (x (t), u (t), 𝝁),
y (t) = g (x (t), u (t), 𝝁),
x (0) = x0,

where:

▶ x (t): state variables
▶ y (t): output variables (observables)
▶ 𝝁: scalar parameters (to be estimated)
▶ u (t): input variables (control)
▶ f and g : rational functions in x (t), 𝝁, u (t)

Given data: D = ((t1, y1), . . . , (tn, yn)), where y i is measured at time ti
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Application: Parameter Estimation for ODEs Georgy Scholten

Constructing the Objective Function

Let 𝝁 be the parameters to be estimated.
Take time points {t1, t2, . . . , tN } and let 𝝁 ∈ Rn

f (𝝁) =
N∑︁

i=1

(
y (ti ; 𝝁) − y target(ti )

)2

where y (ti ; 𝝁) is the computed response at time ti for parameters 𝝁, and
y target(ti ) is the target response.
Take a sample set S ∈ Rn and construct

wd := argmin
p∈𝒫n,d

∑︁
s∈S

(p(s) − f (s))2

The recovered critical points serve as initial guesses for local

optimization methods.
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Parameter Estimation Lotka-Volterra: (t=1)
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Parameter Estimation Lotka-Volterra (t=100)
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Parameter Estimation Lotka-Volterra (t=100)
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Locally Identifiable Model
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Thank You! I

▶ Matthieu Dolbeault, David Krieg, and Mario Ullrich. “A sharp upper
bound for sampling numbers in L2”. Applied and Computational
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https://doi.org/10.1016/j.acha.2022.12.001. url: https://www.
sciencedirect.com/science/article/pii/S1063520322000999

▶ Albert Cohen and Giovanni Migliorati. “Optimal weighted least-squares
methods”. en. The SMAI Journal of computational mathematics 3
(2017), pp. 181–203. doi: 10.5802/smai-jcm.24. url: https://smai-
jcm.centre-mersenne.org/articles/10.5802/smai-jcm.24/

▶ Mohab Safey El Din, Georgy Scholten, and Emmanuel Trélat.
“Probabilistic algorithm for computing all local minimizers of Morse
functions on a compact domain”. working paper or preprint. 2025. url:
https://hal.sorbonne-universite.fr/hal-05160251
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