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A Hierarchy of Power Series

A power series f(x) € Q[x] is called algebraic, if it is annihilated by
a non-zero polynomial P(z,y) € Q[z,y], i.e., P(x, f(x)) =0.

A power series f(z) € Q[z] is called D-finite, if it satisfies a non-zero [ e ]
linear differential equation with polynomial coefficients a;(x) € Q[z]: ~finite
f+\
an (@) f") (@) + an1(2) F 7D (@) + - + ao(2) f(z) = 0. |
Algebraic
Theorem (Folklore; Abel 1829)
Every algebraic power series is D-finite. Rational
Question (Fuchs, Liouville, Stanley)
|
Which D-finite series are algebraic? : g
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Algebraicity of Integrals

Special Case

When is the solution of y/(z) = u(z) for a rational function u(z) € Q(z) algebraic?

Note: y(x) is D-finite, although we are only given an inhomogeneous differential equation.

Partial fraction decomposition of u(x):

_ Bij
Then y(z) is rational (and thus algebraic) if and only if 5;1 = 0 for all i. Otherwise:
summands of the form f; ; - log(z — ;) appear, and y(x) is transcendental.
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Special Case

When is the solution of y'(x) = u(x) for an algebraic function u(z) € Q[z] algebraic?

A power series f(z) € Q[x] is called globally bounded (g.b.) if there exist o, 8 € Z \ {0},
such that af (Bx) € Z[z].

Theorem (André, 1989)

The primitive y(x) of an algebraic function u(x) is algebraic if and only if it is g.b.

André's Theorem provides an arithmetic characterization of algebraicity of primitives.

Theseriesfﬁ=f1+x+x2+...=x+%2+%—3+...:—log(l—x) is not g.b.
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Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y/(x) = u(x)y(z) for a rational function u(z) € Q(x) algebraic?

Solution y(x) = exp ([ u(x)dz). Partial fraction decomposition of u(x):

u(z) = Z @:fliym + P(z).

Write

Then

is algebraic if and only if 5,1 € Q and R(x) = 0.
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Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y/(z) = u(x)y(z) for an algebraic function u(z) € Q[x] algebraic?

This is known as Abel’s Problem.

It is more involved, as there is no easy analogue of the partial fraction decomposition for
algebraic power series.

It was solved by Risch in 1970, and by Baldassari and Dwork in 1979.
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Deciding Algebraicity of D-Finite Series

Deciding Algebraicity

Given a linear differential equation with polynomial coefficients, decide if (A) all solutions are
algebraic, (E) there is a non-zero algebraic solution, or (P) a particular solution is algebraic.

Question (A) solved by Singer 1979, relying on Risch's algorithm for Abel’'s Problem, and
earlier work by Painlevé (1887) and Boulanger (1898). It involves exponential bounds, and is
not suitable for implementation.

Recent (semi-)algorithms for question (P) [Bostan, Salvy, Singer, 2025+].

Special cases are easier: e.g. order one (as discussed before), or hypergeometric functions
[Christol, 1986; Beukers-Heckman 1989; F.-Yurkevich 2024]
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of (%) vanishes.

Proven: Picard-Fuchs equations [Katz 1972], Order one [Honda, 1981; Chudnovsky?, 1985].
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Back to Order One Equations

Theorem (Jacobson, 1937)
The p-curvature of the equation y'(x) = u(x) - y(z) is given by u(z)? + uP~Y(z) € Fy(z).

A solution of an order one differential equation y'(x) = u(x)y(x) is given by

y(z) = exp ( / u(a:)dx) .
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Order 1 and Kronecker
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Examples

The equation /() = y(x) has no solution in F,[x], and exp(x) is transcendental. Moreover,
17 + 1= =1 =£ 0 for all primes p.

Example

The function y(z) = exp(arctan(z)) satisfies y/(x) = ~y(x). We have

1
1422
0 if p=1mod 4
w@p +uC V@) =3, P
sV if p =3 mod 4.

So y(x) is not algebraic.
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Kronecker's Theorem

Theorem (Kronecker, 1880)

Let R(w) € Q[w]. Assume that the reduction of R(w) modulo p splits into linear factors in
F,w] for almost all prime numbers p. Then R(w) splits into linear factors in Q[w].

The polynomial 22 + 1 € F,[z] factors as (z + i)(z — i) € Fp[z] for p =1 mod 4 and is
irreducible if p = 3 mod 4, as —1 € [F,, is a square precisely in the first case.
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Kronecker's Theorem

Theorem (Kronecker, 1880)

Let R(w) € Q[w]. Assume that the reduction of R(w) modulo p splits into linear factors in
F,w] for almost all prime numbers p. Then R(w) splits into linear factors in Q[w].

The polynomial 22 + 1 € F,[z] factors as (z + i)(z — i) € Fp[z] for p =1 mod 4 and is
irreducible if p = 3 mod 4, as —1 € [F,, is a square precisely in the first case.

Nowadays, this theorem is seen as a consequence of Chebotarev’s Density Theorem.

A different proof was given by Chudnovsky? in 1985 using Hermite-Padé approximation.
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Rothstein-Trager Resultants

the Problem

Theorem (Rothstein, 1976; Trager, 1976)
Let u(z) € Q(x) be a rational function of the form

r

_a(x) a;
M= 5 ~ 2 B

o=l

~—

with a(x),b(z) € Z[x]. Then the residues o; are precisely the roots of

R(w) = Res;(b(z),a(x) —w - b'(x)) € Z[w].
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Order 1 and Kronecker
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Proof of Honda's Theorem

y'(z) = u(x)y(z) (Eq) with u(z) = M, and R(w) :

b(z) = Res(b(z),a(x) —w - b'(z)).

Proposition (Folklore; Honda, 1981)

The following are equivalent:

(1) (Eq) has an algebraic solution.

(2) We have dega(z) < degb(x), all poles
of u(x) are simple, and R(w) splits
completely in Q[w].
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Proof of Honda's Theorem

a(x)

y'(z) = u(x)y(z) (Eq) with u(z) = ) and R(w) = Res(b(z),a(x) —w -V (x)).
Proposition (Folklore; Honda, 1981) Proposition (Honda, 1981)
The following are equivalent: Let p be a prime number. TFAE:

(1) (Eq) has an algebraic solution. (1,) (Eq)p has an algebraic solution in Fp[z].
(2) We have dega(z) < degb(x), all poles (2,) We have dega(z) < degb(x), all poles
of u(x) are simple, and R(w) splits of u(x) are simple, and R(w) splits

completely in Q[w]. completely in Fpw].

(3,) We have u(z)? + uP=1(z) = 0.

By Kronecker's Theorem: (2,,) for almost all prime numbers p implies (2).

Main question today: Can we deduce (2) from (2,) for a finite number of primes? 1228



Effective Kronecker
[ Je]

An Effective Version of Kronecker’'s Theorem

Theorem (Chudnovsky?, 1985
Let R(w) € Z[w] have leading coefficient A € Z~y.

Then there exists o € N such that the polynomial R(w) splits completely in Q[w] if and
only if R(w) splits completely in Fp[w] for all primes p

® not dividing A,

® bounded from above by o.
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Effective Kronecker curvature proac o the Problem
[ Je] 00

An Effective Version of Kronecker’'s Theorem

Theorem (Chudnovsky?, 1985; F.-Pannier, 2025+)

Let R(w) € Z]w] have leading coefficient A € Z~g, and let t(A) = Hp‘Apl/(p_l).
Let B € R be an upper bound on the modulus of all complex roots of R.
Let M := [2.826- A% - t(A)]| and N := [6.076 - BM].
Then, setting o = (20M + 1)N + 2M, the polynomial R(w) splits completely in Q[w] if and
only if R(w) splits completely in Fp[w] for all primes p
® not dividing A,
® bounded from above by o.
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An Effective Version of Kronecker’'s Theorem

Theorem (Chudnovsky?, 1985; F.-Pannier, 2025+)

Let R(w) € Z[w] have leading coefficient A € Z~g, and let t(A) = Hpmpl/(p_l).
Let B € R be an upper bound on the modulus of all complex roots of R.
Let M = [2.826 - A®-t(A)®] and N := [6.076 - BM].
Then, setting o .= (2M + 1)N + 2M, the polynomial R(w) splits completely in Q[w] if and
only if R(w) splits completely in I, [w] for all primes p
® not dividing A,
® bounded from above by o.

57 + /2577 + 768log(2)” — 38410g(2) log(3)) _ . -«
8log(2) T

'/955888052326228459513511038256280353796626534577600 ~ 2.826
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Theorem (Chudnovsky?, 1985; F.-Pannier, 2025+)

Let R(w) € Z]w] have leading coefficient A € Z~g, and let t(A) = Hp‘Apl/(p_l).
Let B € R be an upper bound on the modulus of all complex roots of R.
Let M := [2.826 - A% - t(A)*| and N := [6.076 - BM].

Then, setting o .= (2M + 1)N + 2M, the polynomial R(w) splits completely in Q[w] if and

only if R(w) splits completely in Fp[w] for all primes p
® not dividing A,
® bounded from above by o.

If there is a single prime p < o, not dividing A, such that R(w) does not split completely in

F,w], then R(w) does not split completely in Q[w].
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Effective Kronecker
oe

|deas of the Chudnovskys' Proof of Kronecker's Theorem

The function 2% = (1 — 2)® is algebraic if and only if o € Q.

Given a root a¢ Q of some polynomial R(w) € Q[w], and two integers M and N, explicit

Hermite-Padé approximants P;(z) € Q(«)[z] of degree at most N are known such that
Py(2) + Py(2)(1 — 2)% 4 - + Pops(2)(1 — 2)?M2 = g,27 + O(2°T1),

with o = (2M + 1)N + 2M, and g, = Y2 ¢ Q* [Hermite 1874; Jager, 1964].
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Given a root a¢ Q of some polynomial R(w) € Q[w], and two integers M and N, explicit
Hermite-Padé approximants P;(z) € Q(«)[z] of degree at most N are known such that
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Let L be the splitting field of R(w). Construct Q = Qu n # 0 such that

[Normy, g (num(2g,))| < X (M)™ - V(M) with X(M) — 0 as M — cc.
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|deas of the Chudnovskys' Proof of Kronecker's Theorem

The function 2% = (1 — 2)® is algebraic if and only if o € Q.
Given a root a¢Z Q of some polynomial R(w) € Q[w], and two integers M and N, explicit
Hermite-Padé approximants P;(z) € Q(«)[z] of degree at most N are known such that

Po(2) + Pi(2)(1 = 2)® 4+ 4 Popr(2) (1 — 2)*M = g,27 + O(2°1),

with o = (2M + 1)N +2M, and g, = Y227 c Q* [Hermite 1874; Jager, 1964].

o!

Let L be the splitting field of R(w). Construct Q = Qu n # 0 such that
[Normy, g (num(2g,))| < X (M)™ - V(M) with X(M) — 0 as M — cc.
But num(2g,)€ O} has norm > 1, a contradiction for large M and N. [Chudnovsky?, 1985]
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|deas of the Chudnovskys' Proof of Kronecker's Theorem

The function 2% = (1 — 2)® is algebraic if and only if o € Q.

Given a root a¢ Q of some polynomial R(w) € Q[w], and two integers M and N, explicit

Hermite-Padé approximants P;(z) € Q(«)[z] of degree at most N are known such that
Py(2) + Py(2)(1 — 2)% 4 - + Pops(2)(1 — 2)?M2 = g,27 + O(2°T1),

NI12M+1

with 0 = (2M + 1)N + 2M, and g, = € Q* [Hermite 1874; Jager, 1964].
Let L be the splitting field of R(w). Construct 2 = Qs n # 0 such that

o!

[Normy, g (num(2g,))| < X (M)™ - V(M) with X(M) — 0 as M — cc.

But num(2g, )€ O% has norm > 1, a contradiction for large M and N. [Chudnovsky?, 1985]

Our contribution [F.-Pannier, 2025+]

Exhibiting explicit values of M and N such that the contradiction occurs.
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Effective p-curvature proaches to the Problem
@00 [e]e] o]

Effective Version of Honda's Theorem

Corollary (Chudnovsky?, 1985; F.-Pannier, 2025+)

Let a(x),b(x) € Z[x] and R(w) := Res,(b(z), a(x) —w - (x)) € Q[w], with leading coefficient
A = |Resg(b(x), =V (2))], t(A) = Hp|Ap1/(p_1). Let B € R be an upper bound on the
modulus of all complex roots of R. Let M = [2.826 - A® - t(A)*] and N := [6.076 - BM].
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Effective Version of Honda's Theorem

Corollary (Chudnovsky?, 1985; F.-Pannier, 2025+)
Let a(x),b(x) € Z[x] and R(w) := Res,(b(z), a(x) —w - (x)) € Q[w], with leading coefficient

A = |Resg(b(x), =V (2))], t(A) = Hp|Ap1/(p_1). Let B € R be an upper bound on the
modulus of all complex roots of R. Let M = [2.826 - A® - t(A)*] and N := [6.076 - BM].

a(z)

All solutions of i/ (z) = Z((i) y(z) are algebraic if and only if the p-curvatures of the equation

vanish for all primes p:
® not dividing A
® bounded from above by o == (2M + 1)N + 2M.
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Effective Version of Honda's Theorem

Corollary (Chudnovsky?, 1985; F.-Pannier, 2025+)

Let a(x),b(x) € Z[x] and R(w) := Res,(b(z), a(x) —w - (x)) € Q[w], with leading coefficient
A = |Resg(b(x), =V (2))], t(A) = Hp|Ap1/(p_1). Let B € R be an upper bound on the
modulus of all complex roots of R. Let M = [2.826 - A® - t(A)*] and N := [6.076 - BM].

All solutions of i/ (z) = %y(az) are algebraic if and only if the p-curvatures of the equation
vanish for all primes p:

® not dividing A

® bounded from above by o == (2M + 1)N + 2M.

Proving Transcendence is Easy

A single prime suffices to conclude transcendence of the solutions.
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Effective p-curvature
(o] Jo}

Algorithm and Complexity

Input a,b € Z[x] of degree at most d, with coefficients bounded by H.
Output The nature (algebraic or transcendental) of exp([ ).

16/23



Effective p-curvature
(o] Jo}

Algorithm and Complexity

Input a,b € Z[z] of degree at most d, with coefficients bounded by H.
Output The nature (algebraic or transcendental) of exp([ ).
1. If b not squarefree or deg(a) > deg(b) then return transcendental;
2. R:=Res;(ba—w-V) € Qu], A,t, B;
3. M :=[2.826- A% - t(A)*|, N :=6.076 - BM, 0 := (2M + 1)N + 2M, p :=2;

4. while p < ¢
i. if p fA, then compute the p-curvature;

ii. if p-curvature # 0, then return transcendental, else p := nextprime(p);

5. return algebraic.
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Effective p-curvature
(o] Jo}

Algorithm and Complexity

Input a,b € Z[z] of degree at most d, with coefficients bounded by H.

Output The nature (algebraic or transcendental) of exp([ ¢). | O(373dq12d—1 f12d=6)
1. If b not squarefree or deg(a) > deg(b) then return transcendental;

2. R:=Resg(ba—w-b) € Qu], A,t, B; O(d?log(H)) bit operations
3. M = [2.826- A% - t(A)*], N :=6.076 - BM, 0 := (2M + 1)N + 2M, p :==2;
4. while p <o O(d*log H) - O(BAS) bit operations | [Bostan-Schost, 2009]

i. if p fA, then compute the p-curvature;
ii. if p-curvature # 0, then return transcendental, else p := nextprime(p);

5. return algebraic.
t(A) =0(logA), o=O0(BA%), B,A=0(3q-1/2g*1)
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Effective p-curvature
(o] Jo}

Algorithm and Complexity

Input a,b € Z[z] of degree at most d, with coefficients bounded by H.

Output The nature (algebraic or transcendental) of exp([ ¢). | O(373dq12d—1 f12d=6)
1. If b not squarefree or deg(a) > deg(b) then return transcendental;

2. R:=Resg(ba—w-b) € Qu], A,t, B; O(d?log(H)) bit operations
3. M = [2.826- A% - t(A)*], N :=6.076 - BM, 0 := (2M + 1)N + 2M, p :==2;
4. while p <o O(d*log H) - O(BAS) bit operations | [Bostan-Schost, 2009]

i. if p fA, then compute the p-curvature;
ii. if p-curvature # 0, then return transcendental, else p := nextprime(p);

5. return algebraic.
t(A) =0(logA), o=O0(BA%), B,A=0(3q-1/2g*1)

“Generically”, the algorithm takes O(d?log(H)) bit operations to return transcendental.
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Effective p-curvature
o

a(z)/b(z) Output p o Time
:c%ﬂ transcendental | 3 | 25455734 17.1 ms
% algebraic - 265 120 ms
m transcendental | 57 | 7.922-10% | 88.7 ms
Autl algebraic - | 1926284 |8 min9s

[61]: |a = 2¥x+1
b X" 2+x+1
%time FullHondal(a,b)

Delta=3, t=1.73285080756888, B=1, M=397, N=2422

sigma = 1926284
CPU times: user 8min 9s, sys: 93.6 ms, total: 8min 9s
Wall time: 8min 8s

[61]: ‘'algebraic’
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Different Approaches to the Problem
[ leJele]e]

Indicial Polynomials — Abusing gfun’s istranscendental

Working directly in the context of differential equations: y(z)" = u(x)y(z):

The residues of u(z) are the local exponents of the equation at its singularities. One can
compute a degree one polynomial, the indicial polynomial in an algebraic extension of Q(x),
at each of these singularities, whose sole zero is the local exponent.
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Proposition

The solution of y/(x) = u(x)y(x) for u(z) € Q(z) is algebraic if and only if the equation is
Fuchsian and all local exponents are rational.
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Working directly in the context of differential equations: y(z)" = u(x)y(z):

The residues of u(z) are the local exponents of the equation at its singularities. One can
compute a degree one polynomial, the indicial polynomial in an algebraic extension of Q(x),
at each of these singularities, whose sole zero is the local exponent.

Proposition

The solution of y/(x) = u(x)y(x) for u(z) € Q(z) is algebraic if and only if the equation is
Fuchsian and all local exponents are rational.

Upshot: “Easy” calculations in an algebraic extension of Q give an algorithm to decide
algebraicity of solutions.
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Different Approaches to the Problem
[ leJele]e]

Indicial Polynomials — Abusing gfun’s istranscendental

Working directly in the context of differential equations: y(z)" = u(x)y(z):

The residues of u(z) are the local exponents of the equation at its singularities. One can
compute a degree one polynomial, the indicial polynomial in an algebraic extension of Q(x),
at each of these singularities, whose sole zero is the local exponent.

Proposition

The solution of y/(x) = u(x)y(x) for u(z) € Q(z) is algebraic if and only if the equation is
Fuchsian and all local exponents are rational.

Upshot: “Easy” calculations in an algebraic extension of Q give an algorithm to decide
algebraicity of solutions.

gfun package for Maple has command istranscendental deciding transcendence of
solutions of arbitrary order equations based on [Bostan, Salvy, Singer 2025+]. Can be

“abused” for order one equations to check the conditions from the Proposition above.
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Different Approaches to the Problem
(o] Jelele]

The Least Prime That Does Not Split in a Number Field

Given a Galois field extension K/Q of degree d # 1 and discriminant D, estimates on the size
of the smallest prime that does not split completely in K are known.
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The Least Prime That Does Not Split in a Number Field

Given a Galois field extension K/Q of degree d # 1 and discriminant D, estimates on the size
of the smallest prime that does not split completely in K are known.

Theorem (Valer, Voloch, 2000)

If exp(max{105, 25(log(d))?}) < 8D7@ 1 then there exists a prime p, such that p does not
1
split completely in K and p < 26d?>D?@-1
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0@000

The Least Prime That Does Not Split in a Number Field

Given a Galois field extension K/Q of degree d # 1 and discriminant D, estimates on the size
of the smallest prime that does not split completely in K are known.

Theorem (Valer, Voloch, 2000)

If exp(max{105, 25(log(d))?}) < 8D7@ 1 then there exists a prime p, such that p does not
1
split completely in K and p < 26d?>D?@-1

Apply this to the splitting field of the Rothstein-Trager resultant:

A prime p splitting completely in the splitting field of a polynomial R(w) is equivalent to
R(w) mod p splitting into linear factors in Fj,[w].

Obstacles: impractical bounds, the discriminant of a polynomial does not directly relate to

the discriminant of its splitting field.
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Different Approaches to the Problem
[e]e] le]e]

Finding Rational Roots

Theorem (Bostan, Chyzak, Giusti, Lebreton, Lecerf, Salvy, Schost, 2017)

Finding all rational roots of a monic univariate polynomial R(w) € Z[w] of degree d, whose
coefficients are bounded by H € N can be done in

O(d” log(H))

bit operations where the notation O hides logarithmic factors log(d) and log(log H).

Corollary

Let u(z) € Q(x) be of degree d, with coefficients bounded by H. One can decide in
O(d*log(H)) bit operations if its residues are rational by finding all rational roots of the
Rothstein-Trager resultant, or, equivalently, if the associated equation y'(x) = u(x)y(x) has
algebraic solutions.

Recall our complexity: O(373¢q12d—112d=6) -( 20 /23



Small Examples — Timings

Different Approaches to the Problem

[e]e]e] lo}

a(x)/b(x) o Output p-curv ist fact RR
% 265 algebraic 120 ms | 45 ms | <1 ms | 25 ms
Mg_ﬁ;% ~ 6 - 10?7 | transcendental 5ms | 38ms|<1ms|30ms
e 1926284 algebraic | 8min9s | 19ms | <1ms |24 ms
x2£4 ~ 101 algebraic DNF 15ms | <1ms | 22 ms
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Large Examples — Timings

Different Approaches to the Problem
[e]e]ele] ]

Random large inputs almost always yield output transcendental.

RT+RR (Maple)

Degree | Height || p-curv ist RT ‘ RT+RR | fact (Sage)
10 210 Ims | 12 ms 3 ms 3 ms <1 ms
20 210 2ms | 24ms| 9ms 10 ms 4 ms
20 220 2ms | 25ms | 19 ms 21 ms 7 ms
40 210 4ms | 71ms | 46 ms | 49 ms 79 ms
40 220 5ms | 76 ms | 100 ms | 107 ms 171 ms
80 210 0.1s | 03s | 03s 0.3s 24 s
80 220 0.1s | 03s | 06s 0.6 s 5.0s
160 210 04s | 1.8s 24s 24's 83 s
160 220 04s | 1.9s | 39s 4.0's 182 s

Our algorithm quickly proves transcendence.
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Different Approaches to the Problem

00000

Future: Make the Grothendieck conjecture effective for all the cases in which it is known.

Thank you for your attention!
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Consider
a(x) x+2 1 1 1

)
_b(a;)_2$2+x—1_6'x—%_§'x+1'
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Different Approaches to the Problem
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a(x) x+2

Consider
1 1 1
u(z) = =

)
b(x) _2x2+x—1_6'x—%_§'x+1'

The equation y'(z) = u(x)y(x) has the algebraic solution

(20— 1)°/°

y(z) = W,

which can be reduced modulo all primes numbers except for 2 and 3.
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/e p-curvature Different Approaches to the Problem

00000

Consider
1 1 1

x—%_g'x—}-l'

a(z)  x+2
~ob(xr) 222+2-1

_9
G

The equation y'(z) = u(x)y(x) has the algebraic solution

(20— 1)°/°

y(z) = W,

which can be reduced modulo all primes numbers except for 2 and 3.
We have A = Res, (b(z), =t/ (x)) = —18.
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Different Approaches to the Problem
00000

Consider () 0 . ) )
a(x T +
u(®@) = B 3 41

)
b(z) _2x2+x—1_6'x7%_

The equation y'(z) = u(x)y(x) has the algebraic solution
yay = Z= D ik
(z+1)Y3°

which can be reduced modulo all primes numbers except for 2 and 3.
We have A = Res,(b(x), —b/(z)) = —18. For p = 2 the denominator of u(x) reduces to a
degree one polynomial.
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Different Approaches to the Problem
00000

a(x) x+2

Consider
1 1 1
u(z) = =

)
b(a;)_2x2+x—1_6'x—%_§'93+1'

The equation y'(z) = u(x)y(x) has the algebraic solution

(20— 1)°/°

y(z) = W,

which can be reduced modulo all primes numbers except for 2 and 3.

We have A = Res,(b(x), —b/(z)) = —18. For p = 2 the denominator of u(x) reduces to a
degree one polynomial. For p = 3 the two poles z = % and x = —1 collapse to a single pole of
order 2.
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