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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

A Hierarchy of Power Series

A power series f(x) ∈ Q[[x]] is called algebraic, if it is annihilated by
a non-zero polynomial P (x, y) ∈ Q[x, y], i.e., P (x, f(x)) = 0.

A power series f(x) ∈ Q[[x]] is called D-finite, if it satisfies a non-zero
linear differential equation with polynomial coefficients ai(x) ∈ Q[x]:

an(x)f
(n)(x) + an−1(x)f

(n−1)(x) + · · ·+ a0(x)f(x) = 0.

Theorem (Folklore; Abel 1829)

Every algebraic power series is D-finite.

Question (Fuchs, Liouville, Stanley)

Which D-finite series are algebraic?

D-finite

earctan(x)

Algebraic
n
√
1 + x

Rational

1
1+x2

D-finite

Algebraic

Rational

?
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Algebraicity of Integrals

Special Case

When is the solution of y′(x) = u(x) for a rational function u(x) ∈ Q(x) algebraic?

A power series f(x) ∈ Q[[x]] is called globally bounded (g.b.) if there exist α, β ∈ Z \ {0},
such that αf(βx) ∈ Z[[x]].

Theorem (André, 1989)

The primitive y(x) of an algebraic function u(x) is algebraic if and only if it is g.b.

André’s Theorem provides an arithmetic characterization of algebraicity of primitives.

Example

The series
∫

1
1−x =

∫
1 + x+ x2 + . . . = x+ x2

2 + x3

3 + . . . = − log(1− x) is not g.b.
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When is the solution of y′(x) = u(x) for a rational function u(x) ∈ Q(x) algebraic?

Note: y(x) is D-finite, although we are only given an inhomogeneous differential equation.

Partial fraction decomposition of u(x):

u(x) =
∑
i,j

βi,j
(x− αi)j

+ P (x).

Then y(x) is rational (and thus algebraic) if and only if βi,1 = 0 for all i. Otherwise:
summands of the form βi,j · log(x− αi) appear, and y(x) is transcendental.
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André’s Theorem provides an arithmetic characterization of algebraicity of primitives.

Example

The series
∫

1
1−x =

∫
1 + x+ x2 + . . . = x+ x2

2 + x3

3 + . . . = − log(1− x) is not g.b.

4 / 23



About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Algebraicity of Integrals

Special Case

When is the solution of y′(x) = u(x) for a rational function u(x) ∈ Q(x) algebraic?

Note: y(x) is D-finite, although we are only given an inhomogeneous differential equation.

Partial fraction decomposition of u(x):

u(x) =
∑
i,j

βi,j
(x− αi)j

+ P (x).

Then y(x) is rational (and thus algebraic) if and only if βi,1 = 0 for all i. Otherwise:
summands of the form βi,j · log(x− αi) appear, and y(x) is transcendental.

Theorem (André, 1989)
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y′(x) = u(x)y(x) for a rational function u(x) ∈ Q(x) algebraic?

This is known as Abel’s Problem.

It is more involved, as there is no easy analogue of the partial fraction decomposition for
algebraic power series.

It was solved by Risch in 1970, and by Baldassari and Dwork in 1979.
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Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y′(x) = u(x)y(x) for a rational function u(x) ∈ Q(x) algebraic?

Solution y(x) = exp
(∫

u(x)dx
)
. Partial fraction decomposition of u(x):

u(x) =
∑
i,j

βi,j
(x− αi)j

+ P (x).

Write

R(x) =

∫ ∑
j>1,i

βi,j
(x− αi)j

+ P (x) dx ∈ Q(x).

Then
y(x) =

∏
(x− αi)

βi,1 · exp(R(x))

is algebraic if and only if βi,1 ∈ Q and R(x) = 0.
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Deciding Algebraicity of D-Finite Series

Deciding Algebraicity

Given a linear differential equation with polynomial coefficients, decide if (A) all solutions are
algebraic, (E) there is a non-zero algebraic solution, or (P) a particular solution is algebraic.

Question (A) solved by Singer 1979, relying on Risch’s algorithm for Abel’s Problem, and
earlier work by Painlevé (1887) and Boulanger (1898). It involves exponential bounds, and is
not suitable for implementation.

Recent (semi-)algorithms for question (P) [Bostan, Salvy, Singer, 2025+].

Special cases are easier: e.g. order one (as discussed before), or hypergeometric functions
[Christol, 1986; Beukers-Heckman 1989; F.-Yurkevich 2024]
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

An Arithmetic Approach – A Local-Global Principle

an(x)f
(n)(x) + an−1(x)f

(n−1)(x) + · · ·+ a0(x)f(x) = 0 with ai ∈ Q[x] (∗)

To a differential equation (∗) one can associate for each prime p a matrix, the p-curvature.

Theorem (Cartier’s Lemma, [Katz 1972])

The p-curvature of (∗) vanishes if and only if it has a basis of n solutions in Fp[[x]].

Grothendieck p-Curvature Conjecture, 1969

All solutions of (∗) are algebraic if and only if for almost all prime numbers p the p-curvature
of (∗) vanishes.

Proven: Picard-Fuchs equations [Katz 1972], Order one [Honda, 1981; Chudnovsky2, 1985].

Recent expository paper [Bostan, Caruso, Roques, 2024].
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Back to Order One Equations

Theorem (Jacobson, 1937)

The p-curvature of the equation y′(x) = u(x) · y(x) is given by u(x)p + u(p−1)(x) ∈ Fp(x).

Recall

A solution of an order one differential equation y′(x) = u(x)y(x) is given by

y(x) = exp

(∫
u(x)dx

)
.
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Examples

Example

The equation y′(x) = y(x) has no solution in Fp[[x]], and exp(x) is transcendental. Moreover,
1p + 1(p−1) = 1 ̸= 0 for all primes p.

Example

The function y(x) = exp(arctan(x)) satisfies y′(x) = 1
1+x2 · y(x). We have

u(x)p + u(p−1)(x) =

{
0 if p ≡ 1 mod 4
2

(x+1)p if p ≡ 3 mod 4.

So y(x) is not algebraic.
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About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Kronecker’s Theorem

Theorem (Kronecker, 1880)

Let R(w) ∈ Q[w]. Assume that the reduction of R(w) modulo p splits into linear factors in
Fp[w] for almost all prime numbers p. Then R(w) splits into linear factors in Q[w].

Example

The polynomial x2 + 1 ∈ Fp[x] factors as (x+ i)(x− i) ∈ Fp[x] for p ≡ 1 mod 4 and is
irreducible if p ≡ 3 mod 4, as −1 ∈ Fp is a square precisely in the first case.

Nowadays, this theorem is seen as a consequence of Chebotarev’s Density Theorem.

A different proof was given by Chudnovsky2 in 1985 using Hermite-Padé approximation.
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Rothstein-Trager Resultants

Theorem (Rothstein, 1976; Trager, 1976)

Let u(x) ∈ Q(x) be a rational function of the form

u(x) =
a(x)

b(x)
=

r∑
i=1

αi

x− βi,

with a(x), b(x) ∈ Z[x]. Then the residues αi are precisely the roots of

R(w) := Resx(b(x), a(x)− w · b′(x)) ∈ Z[w].
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Proof of Honda’s Theorem

y′(x) = u(x)y(x) (Eq) with u(x) =
a(x)

b(x)
, and R(w) := Res(b(x), a(x)− w · b′(x)).

Proposition (Folklore; Honda, 1981)

The following are equivalent:

(1) (Eq) has an algebraic solution.
(2) We have deg a(x) < deg b(x), all poles

of u(x) are simple, and R(w) splits
completely in Q[w].

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

(1p) (Eq)p has an algebraic solution in Fp[[x]].
(2p) We have deg a(x) < deg b(x), all poles

of u(x) are simple, and R(w) splits
completely in Fp[w].

(3p) We have u(x)p + u(p−1)(x) = 0.

By Kronecker’s Theorem: (2p) for almost all prime numbers p implies (2).

Main question today: Can we deduce (2) from (2p) for a finite number of primes?
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An Effective Version of Kronecker’s Theorem

Theorem (Chudnovsky2, 1985

; F.-Pannier, 2025+

)

Let R(w) ∈ Z[w] have leading coefficient ∆ ∈ Z>0.

, and let t(∆) :=
∏

p|∆ p1/(p−1).
Let B ∈ R be an upper bound on the modulus of all complex roots of R.
Let M :=

⌈
2.826 ·∆3 · t(∆)3

⌉
and N := ⌈6.076 ·BM⌉.

Then there exists σ ∈ N such that the polynomial R(w) splits completely in Q[w] if and
only if R(w) splits completely in Fp[w] for all primes p

• not dividing ∆,
• bounded from above by σ.

Corollary.

If there is a single prime p ≤ σ, not dividing ∆, such that R(w) does not split completely in
Fp[w], then R(w) does not split completely in Q[w].
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5π +
√

25π2 + 768 log(2)2 − 384 log(2) log(3))

8 log(2)
≈ 6.076

113
√
955888052326228459513511038256280353796626534577600 ≈ 2.826
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Ideas of the Chudnovskys’ Proof of Kronecker’s Theorem

The function xα = (1− z)α is algebraic if and only if α ∈ Q.
Given a root α ̸∈ Q of some polynomial R(w) ∈ Q[w], and two integers M and N , explicit
Hermite-Padé approximants Pi(z) ∈ Q(α)[z] of degree at most N are known such that

P0(z) + P1(z)(1− z)α + · · ·+ P2M (z)(1− z)2Mα = gσz
σ +O(zσ+1),

with σ = (2M + 1)N + 2M , and gσ = N !2M+1

σ! ∈ Q∗ [Hermite 1874; Jager, 1964].

Let L be the splitting field of R(w). Construct Ω = ΩM,N ̸= 0 such that

|NormL/Q(num(Ωgσ))| < X(M)N · Y (M) with X(M) → 0 as M → ∞.

But num(Ωgσ)∈ O∗
L has norm ≥ 1, a contradiction for large M and N . [Chudnovsky2, 1985]

Our contribution [F.-Pannier, 2025+]

Exhibiting explicit values of M and N such that the contradiction occurs.
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Effective Version of Honda’s Theorem

Corollary (Chudnovsky2, 1985; F.-Pannier, 2025+)

Let a(x), b(x) ∈ Z[x] and R(w) := Resx(b(x), a(x)−w · b′(x)) ∈ Q[w], with leading coefficient
∆ := |Resx(b(x),−b′(x))|, t(∆) :=

∏
p|∆ p1/(p−1). Let B ∈ R be an upper bound on the

modulus of all complex roots of R. Let M :=
⌈
2.826 ·∆3 · t(∆)3

⌉
and N := ⌈6.076 ·BM⌉.

All solutions of y′(x) = a(x)
b(x) y(x) are algebraic if and only if the p-curvatures of the equation

vanish for all primes p:

• not dividing ∆
• bounded from above by σ := (2M + 1)N + 2M .

Proving Transcendence is Easy

A single prime suffices to conclude transcendence of the solutions.
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Algorithm and Complexity

Input a, b ∈ Z[x] of degree at most d, with coefficients bounded by H.

Output The nature (algebraic or transcendental) of exp(
∫

a
b ).

1. If b not squarefree or deg(a) ≥ deg(b) then return transcendental;

2. R := Resx(b, a− w · b′) ∈ Q[w], ∆, t, B;

3. M :=
⌈
2.826 ·∆3 · t(∆)3

⌉
, N := 6.076 ·BM , σ := (2M + 1)N + 2M , p := 2;

4. while p ≤ σ:

Õ(d2 logH) · Õ(B∆6) bit operations [Bostan-Schost, 2009]

i. if p ̸ | ∆, then compute the p-curvature;
ii. if p-curvature ̸= 0, then return transcendental, else p := nextprime(p);

5. return algebraic.

t(∆) = O(log∆), σ = Õ(B∆6), B,∆ = O(3−d/2d2d−1/2H2d−1)

“Generically”, the algorithm takes Õ(d2 log(H)) bit operations to return transcendental.
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Preliminary Implementation in SageMath

a(x)/b(x) Output p σ Time
1

x2+1
transcendental 3 25455734 17.1 ms

3x−4
x2−3x+2

algebraic - 265 120 ms
1

x2−3818929
transcendental 57 7.922 · 1046 88.7 ms

2x+1
x2+x+1

algebraic - 1926284 8 min 9 s
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x2−3818929
transcendental 47 7.922 · 1046 88.7 ms

2x+1
x2+x+1

algebraic - 1926284 8 min 9 s
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Indicial Polynomials – Abusing gfun’s istranscendental

Working directly in the context of differential equations: y(x)′ = u(x)y(x):

The residues of u(x) are the local exponents of the equation at its singularities. One can
compute a degree one polynomial, the indicial polynomial in an algebraic extension of Q(x),
at each of these singularities, whose sole zero is the local exponent.

Proposition

The solution of y′(x) = u(x)y(x) for u(x) ∈ Q(x) is algebraic if and only if the equation is
Fuchsian and all local exponents are rational.

Upshot: “Easy” calculations in an algebraic extension of Q give an algorithm to decide
algebraicity of solutions.

gfun package for Maple has command istranscendental deciding transcendence of
solutions of arbitrary order equations based on [Bostan, Salvy, Singer 2025+]. Can be
“abused” for order one equations to check the conditions from the Proposition above.
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The Least Prime That Does Not Split in a Number Field

Given a Galois field extension K/Q of degree d ̸= 1 and discriminant D, estimates on the size
of the smallest prime that does not split completely in K are known.

Theorem (Valer, Voloch, 2000)

If exp(max{105, 25(log(d))2}) ≤ 8D
1

2(d−1) then there exists a prime p, such that p does not

split completely in K and p ≤ 26d2D
1

2(d−1) .

Apply this to the splitting field of the Rothstein-Trager resultant:

A prime p splitting completely in the splitting field of a polynomial R(w) is equivalent to
R(w) mod p splitting into linear factors in Fp[w].

Obstacles: impractical bounds, the discriminant of a polynomial does not directly relate to
the discriminant of its splitting field.

19 / 23
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Finding Rational Roots

Theorem (Bostan, Chyzak, Giusti, Lebreton, Lecerf, Salvy, Schost, 2017)

Finding all rational roots of a monic univariate polynomial R(w) ∈ Z[w] of degree d, whose
coefficients are bounded by H ∈ N can be done in

Õ(d2 log(H))

bit operations where the notation Õ hides logarithmic factors log(d) and log(logH).

Corollary

Let u(x) ∈ Q(x) be of degree d, with coefficients bounded by H. One can decide in
Õ(d3 log(H)) bit operations if its residues are rational by finding all rational roots of the
Rothstein-Trager resultant, or, equivalently, if the associated equation y′(x) = u(x)y(x) has
algebraic solutions.

Recall our complexity: Õ(3−3dd12d−1H12d−6) :( 20 / 23
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Small Examples – Timings

a(x)/b(x) σ Output p-curv ist fact RR
3x−4

2x2−6x+4
265 algebraic 120 ms 45 ms < 1 ms 25 ms

7x2−3x−4
2x3+4x2−6x+4

≈ 6 · 1027 transcendental 5 ms 38 ms < 1 ms 30 ms
2x+1

x2+x+1
1926284 algebraic 8 min 9 s 19 ms < 1 ms 24 ms

1
x2−4

≈ 1011 algebraic DNF 15 ms < 1 ms 22 ms

21 / 23



About Power Series Order 1 and Kronecker Effective Kronecker Effective p-curvature Different Approaches to the Problem

Large Examples – Timings

Random large inputs almost always yield output transcendental.

RT+RR (Maple)
Degree Height p-curv ist RT RT+RR fact (Sage)

10 210 1 ms 12 ms 3 ms 3 ms < 1 ms
20 210 2 ms 24 ms 9 ms 10 ms 4 ms
20 220 2 ms 25 ms 19 ms 21 ms 7 ms
40 210 4 ms 71 ms 46 ms 49 ms 79 ms
40 220 5 ms 76 ms 100 ms 107 ms 171 ms
80 210 0.1 s 0.3 s 0.3 s 0.3 s 2.4 s
80 220 0.1 s 0.3 s 0.6 s 0.6 s 5.0 s
160 210 0.4 s 1.8 s 2.4 s 2.4 s 83 s
160 220 0.4 s 1.9 s 3.9 s 4.0 s 182 s

Our algorithm quickly proves transcendence.
22 / 23
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The End

Future: Make the Grothendieck conjecture effective for all the cases in which it is known.

Thank you for your attention!
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Bonus – Exceptional Primes

Example

Consider

u(x) =
a(x)

b(x)
=

x+ 2

2x2 + x− 1
=

5

6
· 1

x− 1
2

− 1

3
· 1

x+ 1
.

The equation y′(x) = u(x)y(x) has the algebraic solution

y(x) =
(2x− 1)5/6

(x+ 1)1/3
,

which can be reduced modulo all primes numbers except for 2 and 3.
We have ∆ = Resx(b(x),−b′(x)) = −18. For p = 2 the denominator of u(x) reduces to a
degree one polynomial. For p = 3 the two poles x = 1

2 and x = −1 collapse to a single pole of
order 2.
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