Indefinite Integration – an Arithmetic Approach

An Effective Version of the Grothendieck p-curvature Conjecture for Order One Differential Equations

joint work with L. Pannier, arXiv:2510.00892

Florian Fürnsinn

University of Vienna

Pascaline Seminar, LIP, ENS de Lyon October 16, 2025

Overview

About Power Series

- 1. Power Series, Algebraicity and Differential Equations
- 2. Order One Equations and a Theorem of Kronecker
- 3. An Effective Version of Kronecker's Theorem
- 4. Effective Version of the p-Curvature Conjecture for Order 1 Equations
- 5. Different Approaches to the Problem

A Hierarchy of Power Series

About Power Series

Rational

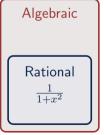
About Power Series

Rational

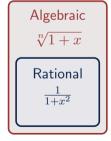
 $\frac{1}{1+x^2}$

A Hierarchy of Power Series

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **algebraic**, if it is annihilated by a non-zero polynomial $P(x,y) \in \mathbb{Q}[x,y]$, i.e., P(x,f(x)) = 0.



A power series $f(x) \in \mathbb{Q}[x]$ is called **algebraic**, if it is annihilated by a non-zero polynomial $P(x,y) \in \mathbb{Q}[x,y]$, i.e., P(x,f(x)) = 0.



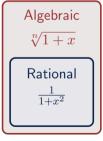
A Hierarchy of Power Series

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **algebraic**, if it is annihilated by a non-zero polynomial $P(x,y) \in \mathbb{Q}[x,y]$, i.e., P(x,f(x)) = 0.

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **D-finite**, if it satisfies a non-zero linear differential equation with polynomial coefficients $a_i(x) \in \mathbb{Q}[x]$:

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0.$$

D-finite



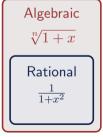
A Hierarchy of Power Series

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **algebraic**, if it is annihilated by a non-zero polynomial $P(x,y) \in \mathbb{Q}[x,y]$, i.e., P(x,f(x)) = 0.

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **D-finite**, if it satisfies a non-zero linear differential equation with polynomial coefficients $a_i(x) \in \mathbb{Q}[x]$:

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0.$$

D-finite $e^{\arctan(x)}$



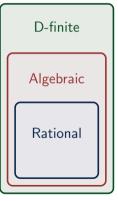
A power series $f(x) \in \mathbb{Q}[x]$ is called **algebraic**, if it is annihilated by a non-zero polynomial $P(x,y) \in \mathbb{Q}[x,y]$, i.e., P(x,f(x)) = 0.

A power series $f(x) \in \mathbb{Q}[x]$ is called **D-finite**, if it satisfies a non-zero linear differential equation with polynomial coefficients $a_i(x) \in \mathbb{O}[x]$:

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0.$$

Theorem (Folklore: Abel 1829)

Every algebraic power series is D-finite.



A Hierarchy of Power Series

About Power Series

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **algebraic**, if it is annihilated by a non-zero polynomial $P(x,y) \in \mathbb{Q}[x,y]$, i.e., P(x,f(x)) = 0.

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **D-finite**, if it satisfies a non-zero linear differential equation with polynomial coefficients $a_i(x) \in \mathbb{Q}[x]$:

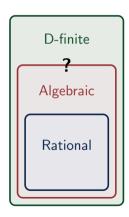
$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0.$$

Theorem (Folklore; Abel 1829)

Every algebraic power series is D-finite.

Question (Fuchs, Liouville, Stanley)

Which D-finite series are algebraic?



Special Case

About Power Series

When is the solution of y'(x) = u(x) for a rational function $u(x) \in \mathbb{Q}(x)$ algebraic?

Special Case

About Power Series

When is the solution of y'(x) = u(x) for a rational function $u(x) \in \mathbb{Q}(x)$ algebraic?

Note: y(x) is D-finite, although we are only given an **inhomogeneous** differential equation.

Special Case

About Power Series

When is the solution of y'(x) = u(x) for a rational function $u(x) \in \mathbb{Q}(x)$ algebraic?

Note: y(x) is D-finite, although we are only given an **inhomogeneous** differential equation.

Partial fraction decomposition of u(x):

$$u(x) = \sum_{i,j} \frac{\beta_{i,j}}{(x - \alpha_i)^j} + P(x).$$

Then y(x) is rational (and thus algebraic) if and only if $\beta_{i,1}=0$ for all i. Otherwise: summands of the form $\beta_{i,j} \cdot \log(x-\alpha_i)$ appear, and y(x) is transcendental.

Special Case

About Power Series

When is the solution of y'(x) = u(x) for an algebraic function $u(x) \in \mathbb{Q}[x]$ algebraic?

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **globally bounded** (g.b.) if there exist $\alpha, \beta \in \mathbb{Z} \setminus \{0\}$, such that $\alpha f(\beta x) \in \mathbb{Z}[\![x]\!]$.

Special Case

About Power Series

When is the solution of y'(x) = u(x) for an algebraic function $u(x) \in \mathbb{Q}[\![x]\!]$ algebraic?

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **globally bounded** (g.b.) if there exist $\alpha, \beta \in \mathbb{Z} \setminus \{0\}$, such that $\alpha f(\beta x) \in \mathbb{Z}[\![x]\!]$.

Theorem (André, 1989)

The primitive y(x) of an algebraic function u(x) is algebraic if and only if it is g.b.

Special Case

About Power Series

When is the solution of y'(x) = u(x) for an algebraic function $u(x) \in \mathbb{Q}[\![x]\!]$ algebraic?

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **globally bounded** (g.b.) if there exist $\alpha, \beta \in \mathbb{Z} \setminus \{0\}$, such that $\alpha f(\beta x) \in \mathbb{Z}[\![x]\!]$.

Theorem (André, 1989)

The primitive y(x) of an algebraic function u(x) is algebraic if and only if it is g.b.

André's Theorem provides an arithmetic characterization of algebraicity of primitives.

Special Case

About Power Series

When is the solution of y'(x) = u(x) for an algebraic function $u(x) \in \mathbb{Q}[\![x]\!]$ algebraic?

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is called **globally bounded** (g.b.) if there exist $\alpha, \beta \in \mathbb{Z} \setminus \{0\}$, such that $\alpha f(\beta x) \in \mathbb{Z}[\![x]\!]$.

Theorem (André, 1989)

The primitive y(x) of an algebraic function u(x) is algebraic if and only if it is g.b.

André's Theorem provides an arithmetic characterization of algebraicity of primitives.

Example

The series $\int \frac{1}{1-x} = \int 1 + x + x^2 + \ldots = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots = -\log(1-x)$ is not g.b.

About Power Series

Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y'(x) = u(x)y(x) for a rational function $u(x) \in \mathbb{Q}(x)$ algebraic?

Effective p-curvature

Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y'(x) = u(x)y(x) for a rational function $u(x) \in \mathbb{Q}(x)$ algebraic?

Solution $y(x) = \exp(\int u(x) dx)$. Partial fraction decomposition of u(x):

$$u(x) = \sum_{i,j} \frac{\beta_{i,j}}{(x - \alpha_i)^j} + P(x).$$

Write

$$R(x) = \int \sum_{i>1, i} \frac{\beta_{i,j}}{(x - \alpha_i)^j} + P(x) \, dx \in \mathbb{Q}(x).$$

Then

$$y(x) = \prod (x - \alpha_i)^{\beta_{i,1}} \cdot \exp(R(x))$$

is algebraic if and only if $\beta_{i,1} \in \mathbb{Q}$ and R(x) = 0.

Algebraicity of Logarithmic Integrals

Homogeneous Equations of Order One

When is the solution of y'(x) = u(x)y(x) for an algebraic function $u(x) \in \mathbb{Q}[\![x]\!]$ algebraic?

This is known as Abel's Problem.

Homogeneous Equations of Order One

When is the solution of y'(x) = u(x)y(x) for an algebraic function $u(x) \in \mathbb{Q}[\![x]\!]$ algebraic?

This is known as Abel's Problem.

About Power Series

It is more involved, as there is no easy analogue of the partial fraction decomposition for algebraic power series.

Homogeneous Equations of Order One

When is the solution of y'(x) = u(x)y(x) for an algebraic function $u(x) \in \mathbb{Q}[\![x]\!]$ algebraic?

This is known as Abel's Problem.

About Power Series

It is more involved, as there is no easy analogue of the partial fraction decomposition for algebraic power series.

It was solved by Risch in 1970, and by Baldassari and Dwork in 1979.

Deciding Algebraicity of D-Finite Series

Deciding Algebraicity

Given a linear differential equation with polynomial coefficients, decide if (A) all solutions are algebraic, (E) there is a non-zero algebraic solution, or (P) a particular solution is algebraic.

Deciding Algebraicity of D-Finite Series

Deciding Algebraicity

Given a linear differential equation with polynomial coefficients, decide if (A) all solutions are algebraic, (E) there is a non-zero algebraic solution, or (P) a particular solution is algebraic.

Question (A) solved by Singer 1979, relying on Risch's algorithm for Abel's Problem, and earlier work by Painlevé (1887) and Boulanger (1898). It involves exponential bounds, and is not suitable for implementation.

Deciding Algebraicity of D-Finite Series

Deciding Algebraicity

Given a linear differential equation with polynomial coefficients, decide if (A) all solutions are algebraic, (E) there is a non-zero algebraic solution, or (P) a particular solution is algebraic.

Question (A) solved by Singer 1979, relying on Risch's algorithm for Abel's Problem, and earlier work by Painlevé (1887) and Boulanger (1898). It involves exponential bounds, and is not suitable for implementation.

Recent (semi-)algorithms for question (P) [Bostan, Salvy, Singer, 2025+].

Deciding Algebraicity

About Power Series

Given a linear differential equation with polynomial coefficients, decide if (A) all solutions are algebraic, (E) there is a non-zero algebraic solution, or (P) a particular solution is algebraic.

Question (A) solved by Singer 1979, relying on Risch's algorithm for Abel's Problem, and earlier work by Painlevé (1887) and Boulanger (1898). It involves exponential bounds, and is not suitable for implementation.

Recent (semi-)algorithms for question (P) [Bostan, Salvy, Singer, 2025+].

Special cases are easier: e.g. order one (as discussed before), or hypergeometric functions [Christol, 1986; Beukers-Heckman 1989; F.-Yurkevich 2024]

About Power Series

An Arithmetic Approach – A Local-Global Principle

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0$$
 with $a_i \in \mathbb{Q}[x]$ (*)

To a differential equation (*) one can associate for each prime p a matrix, the p-curvature.

About Power Series

An Arithmetic Approach – A Local-Global Principle

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0$$
 with $a_i \in \mathbb{Q}[x]$ (*)

To a differential equation (*) one can associate for each prime p a matrix, the p-curvature.

Theorem (Cartier's Lemma, [Katz 1972])

The p-curvature of (*) vanishes if and only if it has a basis of n solutions in $\mathbb{F}_p[\![x]\!]$.

An Arithmetic Approach – A Local-Global Principle

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0$$
 with $a_i \in \mathbb{Q}[x]$ (*)

To a differential equation (*) one can associate for each prime p a matrix, the p-curvature.

Theorem (Cartier's Lemma, [Katz 1972])

The p-curvature of (*) vanishes if and only if it has a basis of n solutions in $\mathbb{F}_p[\![x]\!]$.

Grothendieck p-Curvature Conjecture, 1969

All solutions of (*) are algebraic if and only if for almost all prime numbers p the p-curvature of (*) vanishes.

An Arithmetic Approach – A Local-Global Principle

$$a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_0(x)f(x) = 0$$
 with $a_i \in \mathbb{Q}[x]$ (*)

Effective p-curvature

To a differential equation (*) one can associate for each prime p a matrix, the p-curvature.

Theorem (Cartier's Lemma, [Katz 1972])

The p-curvature of (*) vanishes if and only if it has a basis of n solutions in $\mathbb{F}_n[\![x]\!]$.

Grothendieck p-Curvature Conjecture, 1969

All solutions of (*) are algebraic if and only if for almost all prime numbers p the p-curvature of (*) vanishes.

Proven: Picard-Fuchs equations [Katz 1972], Order one [Honda, 1981; Chudnovsky², 1985].

617

643

649

654

654

An Arithmetic Approach – A Local-Global Principle

 $a_n(x)f^{(n)}(x) + a_{\overline{}}$ To a differential equation (

Theorem (Cartier's Lemm

The p-curvature of (*) van

Grothendieck p-Curvature

All solutions of (*) are alge of (*) vanishes.

Proven: Picard-Fuchs equat

BULLETIN (New Series) OF THE Volume 61, Number 4, October 2024, Pages 609-658 https://doi.org/10.1090/bull/183E https://esi.org/10.1090/8611/1836 Article electronically published on August 15, 2024

> ALGEBRAIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS: AN ARITHMETIC APPROACH

ALIN BOSTAN, XAVIER CARUSO, AND JULIEN ROQUES

Abstract. Given a linear differential equation with coefficients in O(x), an important question is to know whether its full space of solutions consists of algebraic functions, or at least if one of its specific solutions is algebraic. After presenting motivating examples coming from various branches of mathematics. we advertise in an elementary way a beautiful local-global arithmetic approach to these questions, initiated by Grothendieck in the late sixties. This approach has deen ramifications and leads to the still unsolved Grothendieck-Katz ncurvature conjecture.

CONTENTS

- 1. Context, motivation, and basic examples
- Several natural differential equations have algebraic solutions
- Grothendieck's conjecture About the computation of the n-curvature
- Algebraicity and integrality Acknowledgments

References

Recent expository paper [Bostan, Caruso, Roques, 2024].

matrix, the p-curvature. lutions in $\mathbb{F}_n[\![x]\!]$.

with $a_i \in \mathbb{O}[x]$

humbers p the p-curvature

981: Chudnovsky². 1985].

(*)

Theorem (Jacobson, 1937)

About Power Series

The p-curvature of the equation $y'(x) = u(x) \cdot y(x)$ is given by $u(x)^p + u^{(p-1)}(x) \in \mathbb{F}_p(x)$.

Back to Order One Equations

Theorem (Jacobson, 1937)

The p-curvature of the equation $y'(x) = u(x) \cdot y(x)$ is given by $u(x)^p + u^{(p-1)}(x) \in \mathbb{F}_p(x)$.

Recall

About Power Series

A solution of an order one differential equation y'(x) = u(x)y(x) is given by

$$y(x) = \exp\left(\int u(x)dx\right).$$

Examples

About Power Series

Example

The equation y'(x) = y(x) has no solution in $\mathbb{F}_p[\![x]\!]$, and $\exp(x)$ is transcendental. Moreover, $1^p + 1^{(p-1)} = 1 \neq 0$ for all primes p.

Examples

About Power Series

Example

The equation y'(x) = y(x) has no solution in $\mathbb{F}_p[\![x]\!]$, and $\exp(x)$ is transcendental. Moreover, $1^p + 1^{(p-1)} = 1 \neq 0$ for all primes p.

Example

The function $y(x) = \exp(\arctan(x))$ satisfies $y'(x) = \frac{1}{1+x^2} \cdot y(x)$. We have

$$u(x)^p + u^{(p-1)}(x) = \begin{cases} 0 & \text{if } p \equiv 1 \mod 4\\ \frac{2}{(x+1)^p} & \text{if } p \equiv 3 \mod 4. \end{cases}$$

So y(x) is not algebraic.

Kronecker's Theorem

Theorem (Kronecker, 1880)

Let $R(w) \in \mathbb{Q}[w]$. Assume that the reduction of R(w) modulo p splits into linear factors in $\mathbb{F}_p[w]$ for almost all prime numbers p. Then R(w) splits into linear factors in $\mathbb{Q}[w]$.

Example

About Power Series

The polynomial $x^2+1\in\mathbb{F}_p[x]$ factors as $(x+i)(x-i)\in\mathbb{F}_p[x]$ for $p\equiv 1 \bmod 4$ and is irreducible if $p\equiv 3 \bmod 4$, as $-1\in\mathbb{F}_p$ is a square precisely in the first case.

Theorem (Kronecker, 1880)

Let $R(w) \in \mathbb{Q}[w]$. Assume that the reduction of R(w) modulo p splits into linear factors in $\mathbb{F}_p[w]$ for almost all prime numbers p. Then R(w) splits into linear factors in $\mathbb{Q}[w]$.

Example

About Power Series

The polynomial $x^2+1\in\mathbb{F}_p[x]$ factors as $(x+i)(x-i)\in\mathbb{F}_p[x]$ for $p\equiv 1 \bmod 4$ and is irreducible if $p\equiv 3 \bmod 4$, as $-1\in\mathbb{F}_p$ is a square precisely in the first case.

Nowadays, this theorem is seen as a consequence of Chebotarev's Density Theorem.

Kronecker's Theorem

Theorem (Kronecker, 1880)

Let $R(w) \in \mathbb{Q}[w]$. Assume that the reduction of R(w) modulo p splits into linear factors in $\mathbb{F}_p[w]$ for almost all prime numbers p. Then R(w) splits into linear factors in $\mathbb{Q}[w]$.

Example

About Power Series

The polynomial $x^2 + 1 \in \mathbb{F}_p[x]$ factors as $(x+i)(x-i) \in \mathbb{F}_p[x]$ for $p \equiv 1 \mod 4$ and is irreducible if $p \equiv 3 \mod 4$, as $-1 \in \mathbb{F}_p$ is a square precisely in the first case.

Nowadays, this theorem is seen as a consequence of Chebotarev's Density Theorem.

A different proof was given by Chudnovsky² in 1985 using Hermite-Padé approximation.

Rothstein-Trager Resultants

About Power Series

Theorem (Rothstein, 1976; Trager, 1976)

Let $u(x) \in \mathbb{Q}(x)$ be a rational function of the form

$$u(x) = \frac{a(x)}{b(x)} = \sum_{i=1}^{r} \frac{\alpha_i}{x - \beta_i},$$

with $a(x), b(x) \in \mathbb{Z}[x]$. Then the residues α_i are precisely the roots of

$$R(w) := \operatorname{Res}_x(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Z}[w].$$

Proof of Honda's Theorem

$$y'(x) = u(x)y(x) \quad (\text{Eq}) \quad \text{with } u(x) = \frac{a(x)}{b(x)}, \text{ and } R(w) \coloneqq \operatorname{Res}(b(x), a(x) - w \cdot b'(x)).$$

Proposition (Folklore; Honda, 1981)

The following are equivalent:

About Power Series

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) \coloneqq \operatorname{Res}(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

About Power Series

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- (1_p) (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2_p) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3_p) We have $u(x)^p + u^{(p-1)}(x) = 0$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) \coloneqq \operatorname{Res}(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

About Power Series

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- (1_p) (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2_p) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3_p) We have $u(x)^p + u^{(p-1)}(x) = 0$.

By Kronecker's Theorem: (2_p) for almost all prime numbers p implies (2).

Proof of Honda's Theorem

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := \operatorname{Res}(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- (1_p) (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2_p) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3_n) We have $u(x)^p + u^{(p-1)}(x) = 0$.

By Kronecker's Theorem: (2_p) for almost all prime numbers p implies (2).

Main question today: Can we deduce (2) from (2_n) for a finite number of primes?

An Effective Version of Kronecker's Theorem

Theorem (Chudnovsky², 1985

Let $R(w) \in \mathbb{Z}[w]$ have leading coefficient $\Delta \in \mathbb{Z}_{>0}$.

Then there exists $\sigma \in \mathbb{N}$ such that the polynomial R(w) splits completely in $\mathbb{Q}[w]$ if and only if R(w) splits completely in $\mathbb{F}_p[w]$ for all primes p

• not dividing Δ ,

About Power Series

• bounded from above by σ .

Theorem (Chudnovsky², 1985; F.-Pannier, 2025+)

Let $R(w) \in \mathbb{Z}[w]$ have leading coefficient $\Delta \in \mathbb{Z}_{>0}$, and let $t(\Delta) \coloneqq \prod_{p|\Delta} p^{1/(p-1)}$. Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R. Let $M \coloneqq \begin{bmatrix} 2.826 \cdot \Delta^3 \cdot t(\Delta)^3 \end{bmatrix}$ and $N \coloneqq \begin{bmatrix} 6.076 \cdot BM \end{bmatrix}$.

Effective Kronecker

Then, setting $\sigma := (2M+1)N + 2M$, the polynomial R(w) splits completely in $\mathbb{Q}[w]$ if and only if R(w) splits completely in $\mathbb{F}_p[w]$ for all primes p

• not dividing Δ ,

About Power Series

• bounded from above by σ .

An Effective Version of Kronecker's Theorem

Theorem (Chudnovsky², 1985; F.-Pannier, 2025+)

Let $R(w) \in \mathbb{Z}[w]$ have leading coefficient $\Delta \in \mathbb{Z}_{>0}$, and let $t(\Delta) \coloneqq \prod_{p \mid \Delta} p^{1/(p-1)}$.

Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R. Let $M := \begin{bmatrix} 2.826 \cdot \Delta^3 \cdot t(\Delta)^3 \end{bmatrix}$ and $N := \begin{bmatrix} 6.076 \cdot BM \end{bmatrix}$.

Then, setting $\sigma := (2M+1)N + 2M$, the polynomial R(w) splits completely in $\mathbb{Q}[w]$ if and only if R(w) splits completely in $\mathbb{F}_p[w]$ for all primes p

- not dividing Δ.
- bounded from above by σ .

$$\frac{5\pi + \sqrt{25\pi^2 + 768\log(2)^2 - 384\log(2)\log(3))}}{8\log(2)} \approx 6.076$$

 $[\]sqrt[113]{955888052326228459513511038256280353796626534577600} \approx 2.826$

An Effective Version of Kronecker's Theorem

Theorem (Chudnovsky², 1985; F.-Pannier, 2025+)

Let $R(w) \in \mathbb{Z}[w]$ have leading coefficient $\Delta \in \mathbb{Z}_{>0}$, and let $t(\Delta) := \prod_{p \mid \Delta} p^{1/(p-1)}$.

Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R.

Let $M \coloneqq \left\lceil 2.826 \cdot \Delta^3 \cdot t(\Delta)^3 \right\rceil$ and $N \coloneqq \left\lceil 6.076 \cdot BM \right\rceil$.

Then, setting $\sigma \coloneqq (2M+1)N+2M$, the polynomial R(w) splits completely in $\mathbb{Q}[w]$ if and only if R(w) splits completely in $\mathbb{F}_p[w]$ for all primes p

- not dividing Δ ,
- bounded from above by σ .

Corollary.

About Power Series

If there is a single prime $p \leq \sigma$, not dividing Δ , such that R(w) does not split completely in $\mathbb{F}_p[w]$, then R(w) does not split completely in $\mathbb{Q}[w]$.

Ideas of the Chudnovskys' Proof of Kronecker's Theorem

The function $x^{\alpha}=(1-z)^{\alpha}$ is algebraic if and only if $\alpha\in\mathbb{Q}$. Given a root $\alpha\not\in\mathbb{Q}$ of some polynomial $R(w)\in\mathbb{Q}[w]$, and two integers M and N, **explicit** Hermite-Padé approximants $P_i(z)\in\mathbb{Q}(\alpha)[z]$ of degree at most N are known such that

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \dots + P_{2M}(z)(1-z)^{2M\alpha} = g_{\sigma}z^{\sigma} + O(z^{\sigma+1}),$$

with $\sigma=(2M+1)N+2M$, and $g_{\sigma}=\frac{N!^{2M+1}}{\sigma!}\in\mathbb{Q}^*$ [Hermite 1874; Jager, 1964].

The function $x^{\alpha}=(1-z)^{\alpha}$ is algebraic if and only if $\alpha\in\mathbb{Q}$. Given a root $\alpha\not\in\mathbb{Q}$ of some polynomial $R(w)\in\mathbb{Q}[w]$, and two integers M and N, **explicit** Hermite-Padé approximants $P_i(z)\in\mathbb{Q}(\alpha)[z]$ of degree at most N are known such that

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \dots + P_{2M}(z)(1-z)^{2M\alpha} = g_{\sigma}z^{\sigma} + O(z^{\sigma+1}),$$

with $\sigma=(2M+1)N+2M$, and $g_{\sigma}=\frac{N!^{2M+1}}{\sigma!}\in\mathbb{Q}^*$ [Hermite 1874; Jager, 1964].

Let L be the splitting field of R(w). Construct $\Omega = \Omega_{M,N} \neq 0$ such that

$$|\operatorname{Norm}_{L/\mathbb{Q}}(\operatorname{num}(\Omega g_{\sigma}))| < X(M)^N \cdot Y(M) \text{ with } X(M) \to 0 \text{ as } M \to \infty.$$

The function $x^{\alpha}=(1-z)^{\alpha}$ is algebraic if and only if $\alpha\in\mathbb{Q}.$

Given a root $\alpha \not\in \mathbb{Q}$ of some polynomial $R(w) \in \mathbb{Q}[w]$, and two integers M and N, explicit Hermite-Padé approximants $P_i(z) \in \mathbb{Q}(\alpha)[z]$ of degree at most N are known such that

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \dots + P_{2M}(z)(1-z)^{2M\alpha} = g_{\sigma}z^{\sigma} + O(z^{\sigma+1}),$$

with $\sigma=(2M+1)N+2M$, and $g_{\sigma}=\frac{N!^{2M+1}}{\sigma!}\in\mathbb{Q}^*$ [Hermite 1874; Jager, 1964].

Let L be the splitting field of R(w). Construct $\Omega = \Omega_{M,N} \neq 0$ such that

$$|\mathrm{Norm}_{L/\mathbb{Q}}(\mathrm{num}(\Omega g_\sigma))| < X(M)^N \cdot Y(M) \text{ with } X(M) \to 0 \ \text{ as } M \to \infty.$$

But $\operatorname{num}(\Omega g_{\sigma}) \in \mathcal{O}_L^*$ has norm ≥ 1 , a **contradiction** for large M and N. [Chudnovsky², 1985]

Ideas of the Chudnovskys' Proof of Kronecker's Theorem

The function $x^{\alpha}=(1-z)^{\alpha}$ is algebraic if and only if $\alpha\in\mathbb{Q}$.

Given a root $\alpha \notin \mathbb{Q}$ of some polynomial $R(w) \in \mathbb{Q}[w]$, and two integers M and N, explicit Hermite-Padé approximants $P_i(z) \in \mathbb{Q}(\alpha)[z]$ of degree at most N are known such that

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \dots + P_{2M}(z)(1-z)^{2M\alpha} = g_{\sigma}z^{\sigma} + O(z^{\sigma+1}),$$

with $\sigma=(2M+1)N+2M$, and $g_{\sigma}=\frac{N!^{2M+1}}{\sigma!}\in\mathbb{Q}^*$ [Hermite 1874; Jager, 1964].

Let L be the splitting field of R(w). Construct $\Omega = \Omega_{M,N} \neq 0$ such that

$$|\operatorname{Norm}_{L/\mathbb{Q}}(\operatorname{num}(\Omega g_{\sigma}))| < X(M)^N \cdot Y(M) \text{ with } X(M) \to 0 \text{ as } M \to \infty.$$

But $\operatorname{num}(\Omega g_\sigma) \in \mathcal{O}_L^*$ has norm ≥ 1 , a contradiction for large M and N. [Chudnovsky², 1985]

Our contribution [F.-Pannier, 2025+]

Exhibiting explicit values of M and N such that the contradiction occurs.

Effective Version of Honda's Theorem

Corollary (Chudnovsky², 1985; F.-Pannier, 2025+)

Let $a(x), b(x) \in \mathbb{Z}[x]$ and $R(w) \coloneqq \operatorname{Res}_x(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Q}[w]$, with leading coefficient $\Delta \coloneqq |\operatorname{Res}_x(b(x), -b'(x))|$, $t(\Delta) \coloneqq \prod_{p \mid \Delta} p^{1/(p-1)}$. Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R. Let $M \coloneqq \left\lceil 2.826 \cdot \Delta^3 \cdot t(\Delta)^3 \right\rceil$ and $N \coloneqq \left\lceil 6.076 \cdot BM \right\rceil$.

Effective Version of Honda's Theorem

Corollary (Chudnovsky², 1985; F.-Pannier, 2025+)

Let $a(x), b(x) \in \mathbb{Z}[x]$ and $R(w) \coloneqq \operatorname{Res}_x(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Q}[w]$, with leading coefficient $\Delta \coloneqq |\operatorname{Res}_x(b(x), -b'(x))|$, $t(\Delta) \coloneqq \prod_{p \mid \Delta} p^{1/(p-1)}$. Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R. Let $M \coloneqq \left\lceil 2.826 \cdot \Delta^3 \cdot t(\Delta)^3 \right\rceil$ and $N \coloneqq \left\lceil 6.076 \cdot BM \right\rceil$.

Effective p-curvature

All solutions of $y'(x) = \frac{a(x)}{b(x)}y(x)$ are algebraic if and only if the p-curvatures of the equation vanish for all primes p:

- not dividing Δ
- bounded from above by $\sigma := (2M+1)N + 2M$.

Effective Version of Honda's Theorem

Corollary (Chudnovsky², 1985; F.-Pannier, 2025+)

Let $a(x), b(x) \in \mathbb{Z}[x]$ and $R(w) \coloneqq \operatorname{Res}_x(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Q}[w]$, with leading coefficient $\Delta \coloneqq |\operatorname{Res}_x(b(x), -b'(x))|$, $t(\Delta) \coloneqq \prod_{p \mid \Delta} p^{1/(p-1)}$. Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R. Let $M \coloneqq \begin{bmatrix} 2.826 \cdot \Delta^3 \cdot t(\Delta)^3 \end{bmatrix}$ and $N \coloneqq \begin{bmatrix} 6.076 \cdot BM \end{bmatrix}$.

All solutions of $y'(x) = \frac{a(x)}{b(x)}y(x)$ are algebraic if and only if the p-curvatures of the equation vanish for all primes p:

- not dividing Δ
- bounded from above by $\sigma := (2M+1)N + 2M$.

Proving Transcendence is Easy

A single prime suffices to conclude transcendence of the solutions.

Algorithm and Complexity

About Power Series

Input $a, b \in \mathbb{Z}[x]$ of degree at most d, with coefficients bounded by H.

Output The nature (algebraic or transcendental) of $\exp(\int \frac{a}{b})$.

Algorithm and Complexity

About Power Series

Input $a, b \in \mathbb{Z}[x]$ of degree at most d, with coefficients bounded by H.

Output The nature (algebraic or transcendental) of $\exp(\int \frac{a}{b})$.

- 1. If b not squarefree or $deg(a) \ge deg(b)$ then return transcendental;
- 2. $R := \operatorname{Res}_x(b, a w \cdot b') \in \mathbb{Q}[w], \Delta, t, B;$
- 3. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)^3]$, $N := 6.076 \cdot BM$, $\sigma := (2M+1)N + 2M$, p := 2;
- 4. while $p \leq \sigma$:
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return **transcendental**, **else** p := nextprime(p);
- 5. return **algebraic**.

Algorithm and Complexity

Input $a, b \in \mathbb{Z}[x]$ of degree at most d, with coefficients bounded by H.

About Power Series

Output The nature (algebraic or transcendental) of $\exp(\int \frac{a}{h})$. $\left| \tilde{O}(3^{-3d}d^{12d-1}H^{12d-6}) \right|$

- 1. If b not squarefree or $deg(a) \ge deg(b)$ then return transcendental;
- 2. $R := \operatorname{Res}_x(b, a w \cdot b') \in \mathbb{Q}[w], \Delta, t, B;$ $\tilde{O}(d^2 \log(H))$ bit operations

- 3. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)^3], N := 6.076 \cdot BM, \sigma := (2M+1)N + 2M, p := 2;$
- 4. while $p < \sigma$:
- $\left| \tilde{O}(d^2 \log H) \cdot \tilde{O}(B\Delta^6) \right|$ bit operations Bostan-Schost, 2009

- i. if $p \not\mid \Delta$, then compute the p-curvature;
- ii. if p-curvature $\neq 0$, then return transcendental, else p := nextprime(p);
- return algebraic.

$$t(\Delta) = O(\log \Delta), \quad \sigma = \tilde{O}(B\Delta^{6}), \quad B, \Delta = O(3^{-d/2}d^{2d-1/2}H^{2d-1})$$

Input $a, b \in \mathbb{Z}[x]$ of degree at most d, with coefficients bounded by H.

About Power Series

Output The nature (algebraic or transcendental) of $\exp(\int \frac{a}{b})$. $\left| \tilde{O}(3^{-3d}d^{12d-1}H^{12d-6}) \right|$

- 1. If b not squarefree or $deg(a) \ge deg(b)$ then return transcendental;
- 2. $R := \operatorname{Res}_x(b, a w \cdot b') \in \mathbb{Q}[w], \Delta, t, B;$ $\tilde{O}(d^2 \log(H))$ bit operations

- 3. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)^3], N := 6.076 \cdot BM, \sigma := (2M+1)N + 2M, p := 2;$
- $\tilde{O}(d^2 \log H) \cdot \tilde{O}(B\Delta^6)$ bit operations [Bostan-Schost, 2009] 4. while $p < \sigma$:

- i. if $p \not\mid \Delta$, then compute the p-curvature;
- ii. if p-curvature $\neq 0$, then return transcendental, else p := nextprime(p);
- return algebraic.

$$t(\Delta) = O(\log \Delta), \quad \sigma = \tilde{O}(B\Delta^{6}), \quad B, \Delta = O(3^{-d/2}d^{2d-1/2}H^{2d-1})$$

"Generically", the algorithm takes $\tilde{O}(d^2\log(H))$ bit operations to return transcendental.

Preliminary Implementation in SageMath

a(x)/b(x)	Output	p	σ	Time
$\frac{1}{x^2+1}$	transcendental	3	25455734	17.1 ms
$\frac{3x-4}{x^2-3x+2}$	algebraic	-	265	$120~\mathrm{ms}$
$\frac{1}{x^2 - 3818929}$	transcendental	57	$7.922 \cdot 10^{46}$	88.7 ms
$\frac{2x+1}{x^2+x+1}$	algebraic	-	1926284	8 min 9 s

```
[61]: a = 2*x+1
b = x^2+x+1
%time FullHonda1(a,b)
Delta=3, t=1.73205080756888, B=1, M=397, N=2422
sigma = 1926284
CPU times: user 8min 9s, sys: 93.6 ms, total: 8min 9s
Wall time: 8min 8s
[61]: 'algebraic'
```

Preliminary Implementation in SageMath

a(x)/b(x)	Output	p	σ	Time	
$\frac{1}{x^2+1}$	transcendental	3	25455734	17.1 ms	
$\frac{3x-4}{x^2-3x+2}$	algebraic	-	265	$120\ \mathrm{ms}$	
$\frac{1}{x^2 - 3818929}$	transcendental	47	$7.922 \cdot 10^{46}$	88.7 ms	
$\frac{2x+1}{x^2+x+1}$	algebraic	-	1926284	8 min 9 s	

```
[61]: a = 2*x+1
b = x^22+x+1
%time FullHonda1(a,b)
Delta=3, t=1.73205080756888, B=1, M=397, N=2422
sigma = 1926284
CPU times: user 8min 9s, sys: 93.6 ms, total: 8min 9s
Wall time: 8min 8s
[61]: 'algebraic'
```

Working directly in the context of differential equations: y(x)' = u(x)y(x):

The residues of u(x) are the **local exponents** of the equation at its **singularities**. One can compute a degree one polynomial, the **indicial polynomial** in an algebraic extension of $\mathbb{Q}(x)$, at each of these singularities, whose sole zero is the local exponent.

Working directly in the context of differential equations: y(x)' = u(x)y(x):

The residues of u(x) are the **local exponents** of the equation at its **singularities**. One can compute a degree one polynomial, the **indicial polynomial** in an algebraic extension of $\mathbb{Q}(x)$, at each of these singularities, whose sole zero is the local exponent.

Proposition

About Power Series

The solution of y'(x) = u(x)y(x) for $u(x) \in \mathbb{Q}(x)$ is algebraic if and only if the equation is **Fuchsian** and all local exponents are rational.

Working directly in the context of differential equations: y(x)' = u(x)y(x):

The residues of u(x) are the **local exponents** of the equation at its **singularities**. One can compute a degree one polynomial, the **indicial polynomial** in an algebraic extension of $\mathbb{Q}(x)$, at each of these singularities, whose sole zero is the local exponent.

Proposition

About Power Series

The solution of y'(x) = u(x)y(x) for $u(x) \in \mathbb{Q}(x)$ is algebraic if and only if the equation is **Fuchsian** and all local exponents are rational.

Upshot: "Easy" calculations in an algebraic extension of \mathbb{Q} give an algorithm to decide algebraicity of solutions.

Working directly in the context of differential equations: y(x)' = u(x)y(x):

The residues of u(x) are the **local exponents** of the equation at its **singularities**. One can compute a degree one polynomial, the **indicial polynomial** in an algebraic extension of $\mathbb{Q}(x)$, at each of these singularities, whose sole zero is the local exponent.

Proposition

The solution of y'(x) = u(x)y(x) for $u(x) \in \mathbb{Q}(x)$ is algebraic if and only if the equation is **Fuchsian** and all local exponents are rational.

Upshot: "Easy" calculations in an algebraic extension of \mathbb{Q} give an algorithm to decide algebraicity of solutions.

gfun package for Maple has command istranscendental deciding transcendence of solutions of arbitrary order equations based on [Bostan, Salvy, Singer 2025+]. Can be "abused" for order one equations to check the conditions from the Proposition above.

Given a Galois field extension K/\mathbb{Q} of degree $d \neq 1$ and discriminant D, estimates on the size of the smallest prime that does not split completely in K are known.

Given a Galois field extension K/\mathbb{Q} of degree $d \neq 1$ and discriminant D, estimates on the size of the smallest prime that does not split completely in K are known.

Theorem (Valer, Voloch, 2000)

About Power Series

If $\exp(\max\{105, 25(\log(d))^2\}) \le 8D^{\frac{1}{2(d-1)}}$ then there exists a prime p, such that p does not split completely in K and $p \le 26d^2D^{\frac{1}{2(d-1)}}$.

Given a Galois field extension K/\mathbb{Q} of degree $d \neq 1$ and discriminant D, estimates on the size of the smallest prime that does not split completely in K are known.

Effective p-curvature

Theorem (Valer, Voloch, 2000)

If $\exp(\max\{105, 25(\log(d))^2\}) \le 8D^{\frac{2}{2(d-1)}}$ then there exists a prime p, such that p does not split completely in K and $p \le 26d^2D^{\frac{1}{2(d-1)}}$.

Apply this to the splitting field of the Rothstein-Trager resultant:

A prime p splitting completely in the splitting field of a polynomial R(w) is equivalent to $R(w) \bmod p$ splitting into linear factors in $\mathbb{F}_p[w]$.

Given a Galois field extension K/\mathbb{Q} of degree $d \neq 1$ and discriminant D, estimates on the size of the smallest prime that does not split completely in K are known.

Effective p-curvature

Theorem (Valer, Voloch, 2000)

If $\exp(\max\{105, 25(\log(d))^2\}) \le 8D^{\frac{1}{2(d-1)}}$ then there exists a prime p, such that p does not split completely in K and $p \le 26d^2D^{\frac{1}{2(d-1)}}$.

Apply this to the splitting field of the Rothstein-Trager resultant:

A prime p splitting completely in the splitting field of a polynomial R(w) is equivalent to $R(w) \bmod p$ splitting into linear factors in $\mathbb{F}_n[w]$.

Obstacles: impractical bounds, the discriminant of a polynomial does not directly relate to the discriminant of its splitting field.

Theorem (Bostan, Chyzak, Giusti, Lebreton, Lecerf, Salvy, Schost, 2017)

Finding all rational roots of a monic univariate polynomial $R(w) \in \mathbb{Z}[w]$ of degree d, whose coefficients are bounded by $H \in \mathbb{N}$ can be done in

$$\tilde{O}(d^2 \log(H))$$

bit operations where the notation \tilde{O} hides logarithmic factors $\log(d)$ and $\log(\log H)$.

Corollary

About Power Series

Let $u(x) \in \mathbb{Q}(x)$ be of degree d, with coefficients bounded by H. One can decide in $\tilde{O}(d^3 \log(H))$ bit operations if its residues are rational by finding all rational roots of the Rothstein-Trager resultant, or, equivalently, if the associated equation y'(x) = u(x)y(x) has algebraic solutions.

Small Examples – Timings

a(x)/b(x)	σ	Output	p-curv	ist	fact	RR
$\frac{3x-4}{2x^2-6x+4}$	265	algebraic	$120\ \mathrm{ms}$	$45 \mathrm{ms}$	$<1~\mathrm{ms}$	$25~\mathrm{ms}$
$\frac{7x^2 - 3x - 4}{2x^3 + 4x^2 - 6x + 4}$	$\approx 6 \cdot 10^{27}$	transcendental	$5~{\sf ms}$	$38\ \mathrm{ms}$	$<1~\mathrm{ms}$	$30~\mathrm{ms}$
$\frac{2x+1}{x^2+x+1}$	1926284	algebraic	8 min 9 s	$19 \mathrm{ms}$	$<1~\mathrm{ms}$	$24\ \mathrm{ms}$
$\frac{1}{x^2-4}$	$\approx 10^{11}$	algebraic	DNF	$15 \mathrm{ms}$	$< 1 \; \mathrm{ms}$	$22~\mathrm{ms}$

Large Examples – Timings

Random large inputs almost always yield output transcendental.

				RT+RR	(Maple)	
Degree	Height	p-curv	ist	RT	RT+RR	fact (Sage)
10	2^{10}	1 ms	12 ms	$3~\mathrm{ms}$	$3~\mathrm{ms}$	< 1 ms
20	2^{10}	2 ms	$24~\mathrm{ms}$	9 ms	$10~\mathrm{ms}$	$4\;ms$
20	2^{20}	2 ms	$25~{ m ms}$	$19~\mathrm{ms}$	$21~\mathrm{ms}$	7 ms
40	2^{10}	4 ms	71 ms	$46~\mathrm{ms}$	$49~\mathrm{ms}$	$79~\mathrm{ms}$
40	2^{20}	5 ms	76 ms	100 ms	$107 \; \mathrm{ms}$	$171~\mathrm{ms}$
80	2^{10}	$0.1 \ \mathbf{s}$	0.3 s	0.3 s	$0.3 \; s$	$2.4 \mathrm{\ s}$
80	2^{20}	$0.1 \ \mathbf{s}$	0.3 s	$0.6 \; s$	$0.6 \; s$	$5.0 \ s$
160	2^{10}	$0.4~\mathrm{s}$	1.8 s	2.4 s	$2.4 \mathrm{\ s}$	83 s
160	2^{20}	$0.4 \ \mathrm{s}$	1.9 s	3.9 s	4.0 s	182 s

Our algorithm quickly proves transcendence.

The End

Future: Make the Grothendieck conjecture effective for all the cases in which it is known.

Thank you for your attention!

Example

About Power Series

Consider

$$u(x) = \frac{a(x)}{b(x)} = \frac{x+2}{2x^2+x-1} = \frac{5}{6} \cdot \frac{1}{x-\frac{1}{2}} - \frac{1}{3} \cdot \frac{1}{x+1}.$$

Example

Consider

$$u(x) = \frac{a(x)}{b(x)} = \frac{x+2}{2x^2+x-1} = \frac{5}{6} \cdot \frac{1}{x-\frac{1}{2}} - \frac{1}{3} \cdot \frac{1}{x+1}.$$

Effective p-curvature

The equation y'(x) = u(x)y(x) has the algebraic solution

$$y(x) = \frac{(2x-1)^{5/6}}{(x+1)^{1/3}},$$

which can be reduced modulo all primes numbers except for 2 and 3.

Example

Consider

$$u(x) = \frac{a(x)}{b(x)} = \frac{x+2}{2x^2+x-1} = \frac{5}{6} \cdot \frac{1}{x-\frac{1}{2}} - \frac{1}{3} \cdot \frac{1}{x+1}.$$

Effective p-curvature

The equation y'(x) = u(x)y(x) has the algebraic solution

$$y(x) = \frac{(2x-1)^{5/6}}{(x+1)^{1/3}},$$

which can be reduced modulo all primes numbers except for 2 and 3.

We have $\Delta = \operatorname{Res}_x(b(x), -b'(x)) = -18$.

Example

Consider

$$u(x) = \frac{a(x)}{b(x)} = \frac{x+2}{2x^2+x-1} = \frac{5}{6} \cdot \frac{1}{x-\frac{1}{2}} - \frac{1}{3} \cdot \frac{1}{x+1}.$$

Effective p-curvature

The equation y'(x) = u(x)y(x) has the algebraic solution

$$y(x) = \frac{(2x-1)^{5/6}}{(x+1)^{1/3}},$$

which can be reduced modulo all primes numbers except for 2 and 3.

We have $\Delta = \mathrm{Res}_x(b(x), -b'(x)) = -18$. For p=2 the denominator of u(x) reduces to a degree one polynomial.

Example

About Power Series

Consider

$$u(x) = \frac{a(x)}{b(x)} = \frac{x+2}{2x^2+x-1} = \frac{5}{6} \cdot \frac{1}{x-\frac{1}{2}} - \frac{1}{3} \cdot \frac{1}{x+1}.$$

Effective p-curvature

The equation y'(x) = u(x)y(x) has the algebraic solution

$$y(x) = \frac{(2x-1)^{5/6}}{(x+1)^{1/3}},$$

which can be reduced modulo all primes numbers except for 2 and 3.

We have $\Delta = \operatorname{Res}_x(b(x), -b'(x)) = -18$. For p = 2 the denominator of u(x) reduces to a degree one polynomial. For p=3 the two poles $x=\frac{1}{2}$ and x=-1 collapse to a single pole of order 2.