
Braid monodromy computations using certified path tracking

Alexandre Guillemot
Joint work with Pierre Lairez

MATHEXP, Inria, France

Séminaire Pascaline

September 25, 2025 | École Normale Supérieure de Lyon

Motivation

Ct

Cz

b

roots of Fb

Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Motivation

Ct

Cz

γ Setup

• Let g ∈ C[t, z] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators

1/24

Configurations

Ordered configurations

OCn = {(x1, . . . , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.
Configurations

Cn = {subsets of size n in C}.

“Forget order” projection

π : OCn → Cn

(x1, . . . , xn) 7→ {x1, . . . , xn}
. Rk: equivalent definition is Cn = OCn/Sn.

2/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

idB3

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2]

Rk: this is π1(Cn, {1, . . . , n}).

3/24

Pseudo braids

Definition

Pseudo braid: homotopy class of a path

β : [0, 1]→ Cn.

We associate a braid to it by concatenating on

top and on bottom specific pseudo-braids to

get back to a loop around {1, . . . , n}.

4/24

Pseudo braids

Definition

Pseudo braid: homotopy class of a path

β : [0, 1]→ Cn.

We associate a braid to it by concatenating on

top and on bottom specific pseudo-braids to

get back to a loop around {1, . . . , n}.

4/24

Pseudo braids

Definition

Pseudo braid: homotopy class of a path

β : [0, 1]→ Cn.

We associate a braid to it by concatenating on

top and on bottom specific pseudo-braids to

get back to a loop around {1, . . . , n}.

4/24

Pseudo braids

Definition

Pseudo braid: homotopy class of a path

β : [0, 1]→ Cn.

We associate a braid to it by concatenating on

top and on bottom specific pseudo-braids to

get back to a loop around {1, . . . , n}.

4/24

Artin’s theorem

σi ∈ Bn

Theorem [Artin, 1947]

The σi ’s generate Bn (+ explicit relations).

σ4σ
−1
1 σ−1

2 σ−1
3 σ3σ1σ2σ

−1
3

5/24

Artin’s theorem

σi ∈ Bn

Theorem [Artin, 1947]

The σi ’s generate Bn (+ explicit relations).
σ4σ

−1
1 σ−1

2 σ−1
3 σ3σ1σ2σ

−1
3

5/24

Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(t, ζ(t)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at t = 0

Application

Recall g ∈ C[t, z] and γ : [0, 1]→ C\Σ from first slide.

Apply certified homotopy continuation to

H(t, z) = g(γ(t), z).

6/24

Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(t, ζ(t)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at t = 0

Application

Recall g ∈ C[t, z] and γ : [0, 1]→ C\Σ from first slide.

Apply certified homotopy continuation to

H(t, z) = g(γ(t), z).

6/24

Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(t, ζ(t)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at t = 0

Application

Recall g ∈ C[t, z] and γ : [0, 1]→ C\Σ from first slide.

Apply certified homotopy continuation to

H(t, z) = g(γ(t), z).

6/24

Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(t, ζ(t)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at t = 0

Application

Recall g ∈ C[t, z] and γ : [0, 1]→ C\Σ from first slide.

Apply certified homotopy continuation to

H(t, z) = g(γ(t), z).

6/24

Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(t, ζ(t)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at t = 0

Application

Recall g ∈ C[t, z] and γ : [0, 1]→ C\Σ from first slide.

Apply certified homotopy continuation to

H(t, z) = g(γ(t), z).

6/24

Related work

Certified homotopy continuation

• Kearfott, R. B., & Xing, Z. (1994). An Interval Step Control for Continuation Methods.

• van der Hoeven, J. (2015). Reliable homotopy continuation.

• Xu, J., Burr, M., & Yap, C. (2018). An Approach for Certifying Homotopy Continuation

Paths: Univariate Case.

• G., A., & Lairez, P. (2024). Validated Numerics for Algebraic Path Tracking.

• Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method.

Braid computations

• Rodriguez, J. I., & Wang, B. (2017). Numerical computation of braid groups.

• Marco-Buzunariz, M. Á., & Rodŕıguez, M. (2016). SIROCCO: a library for certified

polynomial root continuation.

7/24

Today’s goal

We now assume ζ = (ζ1, . . . , ζn) : [0, 1]→ OCn inducing a loop in Cn i.e. π(ζ(0)) = π(ζ(1)).

Goal

Input : ζ (n disjoint tubular neighborhoods around ζ1, . . . , ζn)

Output : A decomposition in standard generators of the braid induced by ζ1, . . . , ζn

Overall strategy

, We do not have access to ζ, not even to ζ(0).

1) Find a path ζ̃ that has same associated braid.

2) Decompose ζ̃.

8/24

Today’s goal

We now assume ζ = (ζ1, . . . , ζn) : [0, 1]→ OCn inducing a loop in Cn i.e. π(ζ(0)) = π(ζ(1)).

Goal

Input : ζ (n disjoint tubular neighborhoods around ζ1, . . . , ζn)

Output : A decomposition in standard generators of the braid induced by ζ1, . . . , ζn

Overall strategy

, We do not have access to ζ, not even to ζ(0).

1) Find a path ζ̃ that has same associated braid.

2) Decompose ζ̃.

8/24

Today’s goal

We now assume ζ = (ζ1, . . . , ζn) : [0, 1]→ OCn inducing a loop in Cn i.e. π(ζ(0)) = π(ζ(1)).

Goal

Input : ζ (n disjoint tubular neighborhoods around ζ1, . . . , ζn)

Output : A decomposition in standard generators of the braid induced by ζ1, . . . , ζn

Overall strategy

, We do not have access to ζ, not even to ζ(0).

1) Find a path ζ̃ that has same associated braid.

2) Decompose ζ̃.

8/24

Today’s goal

We now assume ζ = (ζ1, . . . , ζn) : [0, 1]→ OCn inducing a loop in Cn i.e. π(ζ(0)) = π(ζ(1)).

Goal

Input : ζ (n disjoint tubular neighborhoods around ζ1, . . . , ζn)

Output : A decomposition in standard generators of the braid induced by ζ1, . . . , ζn

Overall strategy

, We do not have access to ζ, not even to ζ(0).

1) Find a path ζ̃ that has same associated braid.

2) Decompose ζ̃.

σ1σ
−1
2

8/24

Algpath vs SIROCCO

SIROCCO [Marco-Buzunariz and Rodŕıguez, 2016]

• Tubular neighborhoods are piecewise linear.

• For each strand ζi , computes a piecewise linear path

in the tube.

• “Intuitive” (, non generic cases) algorithm on the

braid with piecewise linear strands.

Algpath [G. and Lairez, 2024]

• Tubular neighborhoods are piecewise cubic.

� Faster than SIROCCO,

, Finding a piecewise linear path in the tube requires

additional work.

9/24

Algpath vs SIROCCO

SIROCCO [Marco-Buzunariz and Rodŕıguez, 2016]

• Tubular neighborhoods are piecewise linear.

• For each strand ζi , computes a piecewise linear path

in the tube.

• “Intuitive” (, non generic cases) algorithm on the

braid with piecewise linear strands.

Algpath [G. and Lairez, 2024]

• Tubular neighborhoods are piecewise cubic.

� Faster than SIROCCO,

, Finding a piecewise linear path in the tube requires

additional work.

9/24

Interface

Strand separation

We assume a function sep(i , j , t) that returns

t ′ ∈ (t, 1] and a symbol in ⋆ ∈ {→,←,→,←},
such that for all s ∈ [t, t ′],

• Re(ζi (s)) < Re(ζj(s)) if ⋆ =→,

• Re(ζi (s)) > Re(ζj(s)) if ⋆ =←,

• Im(ζi (s)) < Im(ζj(s)) if ⋆ =→,

• Im(ζi (s)) > Im(ζj(s)) if ⋆ =←,

Monodromy

We assume a fonction monodromy() that returns

the monodromy permutation of ζ.

sep(i , j , t) = (t′,→)

π(ζ(0)) = π(ζ(1))⇒ ∃σ ∈ Sn s.t.

for all i ∈ [1, n], ζi (1) = ζσ(i)(0).

10/24

Interface

Strand separation

We assume a function sep(i , j , t) that returns

t ′ ∈ (t, 1] and a symbol in ⋆ ∈ {→,←,→,←},
such that for all s ∈ [t, t ′],

• Re(ζi (s)) < Re(ζj(s)) if ⋆ =→,

• Re(ζi (s)) > Re(ζj(s)) if ⋆ =←,

• Im(ζi (s)) < Im(ζj(s)) if ⋆ =→,

• Im(ζi (s)) > Im(ζj(s)) if ⋆ =←,

Monodromy

We assume a fonction monodromy() that returns

the monodromy permutation of ζ.

sep(i , j , t) = (t′,→)

π(ζ(0)) = π(ζ(1))⇒ ∃σ ∈ Sn s.t.

for all i ∈ [1, n], ζi (1) = ζσ(i)(0).

10/24

Cells

Recall: OCn = {(x1, . . . , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.

Definition

A cell is a pair c = (R, I) of relations on {1, . . . , n}.
We associate to it a topological space |c | ⊆ OCn

whose points are (x1, . . . , xn) ∈ OCn such that

• for all (i , j) ∈ R, Re(xi) < Re(xj),

• for all (i , j) ∈ I , Im(xi) < Im(xj),

Notation

• i→c j ⇐⇒ (i , j) ∈ R

• i→c j ⇐⇒ (i , j) ∈ I

11/24

Cells

Recall: OCn = {(x1, . . . , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.

Definition

A cell is a pair c = (R, I) of relations on {1, . . . , n}.
We associate to it a topological space |c | ⊆ OCn

whose points are (x1, . . . , xn) ∈ OCn such that

• for all (i , j) ∈ R, Re(xi) < Re(xj),

• for all (i , j) ∈ I , Im(xi) < Im(xj),

Notation

• i→c j ⇐⇒ (i , j) ∈ R

• i→c j ⇐⇒ (i , j) ∈ I

Examples

c = (∅,∅): |c | = OCn,

11/24

Properties of cells

Empty cells

A cell is empty if and only if there is a cycle

in R or in I .

Convex cells

A (non-empty) cell is convex if and only if for

all i , j ∈ {1, . . . , n}, either i→∗j or j→∗i or

i→∗j or j→∗i . We call this graph property

“monochromatic semi-connectedness” (m.s.c.

for short).

Intersection of cells

Given c = (R, I) and c ′ = (R ′, I ′) two cells,

the space associated to (R ∪ R ′, I ∪ I ′) is

|c | ∩ |c ′|.

Examples

12/24

Linearization using convex cells

Idea

1. Compute a squence of convex cells covering ζ

2. Find a simplified path covered by the same cells for

which the braid is easy to compute

• We use sep to compute the sequence of cells

• Correction: convexity of the cells

13/24

Linearization using convex cells

Idea

1. Compute a squence of convex cells covering ζ

2. Find a simplified path covered by the same cells for

which the braid is easy to compute

• We use sep to compute the sequence of cells

• Correction: convexity of the cells

13/24

Linearization using convex cells

Idea

1. Compute a squence of convex cells covering ζ

2. Find a simplified path covered by the same cells for

which the braid is easy to compute

• We use sep to compute the sequence of cells

• Correction: convexity of the cells

13/24

Linearization using convex cells

Idea

1. Compute a squence of convex cells covering ζ

2. Find a simplified path covered by the same cells for

which the braid is easy to compute

• We use sep to compute the sequence of cells

• Correction: convexity of the cells

13/24

Linearization using convex cells

Idea

1. Compute a squence of convex cells covering ζ

2. Find a simplified path covered by the same cells for

which the braid is easy to compute

• We use sep to compute the sequence of cells

• Correction: convexity of the cells

13/24

Step 1: compute a sequence of cells

def path to cells(ζ = (ζ1, . . . , ζn)):

1 c ← (1
0−→2

0−→ . . .
0−→n,∅) # assume that Re(ζ1(0)) < . . . < Re(ζn(0))

2 res ← []

3 loop:

4 res.append(c)

5 i , j , t ← c .pop() # pops the edge with minimal label in c

6 if t = 1: break

7 t ′, ⋆← ζ.sep(i , j , t) # ⋆ ∈ {→,←,→,←}
8 c .insert(i , j , t ′, ⋆)

9 Repair monochromatic semi-connectedness # i.e. convexity

10 # c is convex and contains ζ on [t, s] where s is the smallest time label in c

11 return res

14/24

Repair monochromatic semi-connectedness?

1 loop:

2 res.append(c)

3 i , j , t ← c .pop()

4 if t = 1: break

5 t ′, ⋆← ζ.sep(i , j , t)

6 c .insert(i , j , t ′, ⋆)

7 Repair monochromatic semi-connectedness

15/24

Repair monochromatic semi-connectedness?

1 loop:

2 res.append(c)

3 i , j , t ← c .pop()

4 if t = 1: break

5 t ′, ⋆← ζ.sep(i , j , t)

6 c .insert(i , j , t ′, ⋆)

7 Repair monochromatic semi-connectedness

15/24

Repair monochromatic semi-connectedness?

1 loop:

2 res.append(c)

3 i , j , t ← c .pop()

4 if t = 1: break

5 t ′, ⋆← ζ.sep(i , j , t)

6 c .insert(i , j , t ′, ⋆)

7 Repair monochromatic semi-connectedness

15/24

Repair monochromatic semi-connectedness!

16/24

Repair monochromatic semi-connectedness!

16/24

Repair monochromatic semi-connectedness!

16/24

Step 2: linearize ζ

Definition

Let ρ, ι ∈ Sn. We define

ωρ,ι = (ρ(1) + iι(1), . . . , ρ(n) + iι(n)) ∈ OCn

ρ =

(
1 2 3 4

2 1 4 3

)

ι =

(
1 2 3 4

4 2 1 3

)

ωρ,ι =

· •1 · ·
· · •4 ·
•2 · · ·
· · · •3

17/24

How do we find the ωρ,ι in intersecion of cells?

Problem

c = (R, I) nonempty cell. Find ρ, ι such that

ωρ,ι ∈ |c |.

Solution

Extend R and I to total orders (“topological

sort”).

18/24

How do we find the ωρ,ι in intersecion of cells?

Problem

c = (R, I) nonempty cell. Find ρ, ι such that

ωρ,ι ∈ |c |.

Solution

Extend R and I to total orders (“topological

sort”).

18/24

How do we find the ωρ,ι in intersecion of cells?

Problem

c = (R, I) nonempty cell. Find ρ, ι such that

ωρ,ι ∈ |c |.

Solution

Extend R and I to total orders (“topological

sort”).

18/24

How do we find the ωρ,ι in intersecion of cells?

Problem

c = (R, I) nonempty cell. Find ρ, ι such that

ωρ,ι ∈ |c |.

Solution

Extend R and I to total orders (“topological

sort”).

18/24

Algorithm

def linearize(ζ)

1 cells ← ζ.path to cells()

2 res ← [(1, 1)] # ω1,1 ∈ (1
0−→2

0−→ . . .
0−→n,∅) the first element of cells

3 for each pair of successive cells ci , ci+1 in cells:

4 Compute ρ, ι such that ωρ,ι ∈ |ci | ∩ |ci+1|
5 res.append((ρ, ι))

6 σ ← ζ.monodromy() # ζi (1) = ζσ(i)(0)

7 res.append((σ, ι))

8 return res

19/24

Main property of linearize

. . .

res ← [(1, 1)] # ω1,1 ∈ (1
0−→2

0−→ . . .
0−→n,∅)

. . .

σ ← ζ.monodromy() # ζi (1) = ζσ(i)(0)

res.append((σ, ι))

Proposition

The braid associated to ζ and to the linear

interpolation of the result of ζ.linearize()

are equal.

20/24

Main property of linearize

. . .

res ← [(1, 1)] # ω1,1 ∈ (1
0−→2

0−→ . . .
0−→n,∅)

. . .

σ ← ζ.monodromy() # ζi (1) = ζσ(i)(0)

res.append((σ, ι))

Proposition

The braid associated to ζ and to the linear

interpolation of the result of ζ.linearize()

are equal.

20/24

Main property of linearize

. . .

res ← [(1, 1)] # ω1,1 ∈ (1
0−→2

0−→ . . .
0−→n,∅)

. . .

σ ← ζ.monodromy() # ζi (1) = ζσ(i)(0)

res.append((σ, ι))

Proposition

The braid associated to ζ and to the linear

interpolation of the result of ζ.linearize()

are equal.

20/24

Main property of linearize

. . .

res ← [(1, 1)] # ω1,1 ∈ (1
0−→2

0−→ . . .
0−→n,∅)

. . .

σ ← ζ.monodromy() # ζi (1) = ζσ(i)(0)

res.append((σ, ι))

Proposition

The braid associated to ζ and to the linear

interpolation of the result of ζ.linearize()

are equal.

20/24

Step 3: decomposition of the linearization in standard generators

Reduction

• Computing the braid associated to the whole

linearization or to each piece and concatenating

the results is equivalent

• Assume ωρ,ι and ωρ′,ι′ both lie in a m.s.c cell

c = (R, I). It means that ρ, ρ′ extend R and ι, ι′

extend I . So ωρ,ι′ also lies in c!

• We compute the braid of ωρ,ι → ωρ,ι′ then the

braid of ωρ,ι′ → ωρ′,ι′

21/24

Step 3: decomposition of the linearization in standard generators

Reduction

• Computing the braid associated to the whole

linearization or to each piece and concatenating

the results is equivalent

• Assume ωρ,ι and ωρ′,ι′ both lie in a m.s.c cell

c = (R, I). It means that ρ, ρ′ extend R and ι, ι′

extend I . So ωρ,ι′ also lies in c!

• We compute the braid of ωρ,ι → ωρ,ι′ then the

braid of ωρ,ι′ → ωρ′,ι′

21/24

Step 3: decomposition of the linearization in standard generators

Reduction

• Computing the braid associated to the whole

linearization or to each piece and concatenating

the results is equivalent

• Assume ωρ,ι and ωρ′,ι′ both lie in a m.s.c cell

c = (R, I). It means that ρ, ρ′ extend R and ι, ι′

extend I . So ωρ,ι′ also lies in c!

• We compute the braid of ωρ,ι → ωρ,ι′ then the

braid of ωρ,ι′ → ωρ′,ι′

21/24

Step 3: decomposition of the linearization in standard generators

ωρ,ι → ωρ,ι′

The induced braid is trivial, as the real part

of the strands is constant.

ωρ,ι′ → ωρ′,ι′

Let ρ′ρ−1 = si1 . . . sir be a decomposition in

elementary transpositions. Output

σε1
i1
. . . σεr

ir
with ε1, . . . , εr ∈ {±1}

computed using ι′.

22/24

Step 3: decomposition of the linearization in standard generators

ωρ,ι → ωρ,ι′

The induced braid is trivial, as the real part

of the strands is constant.

ωρ,ι′ → ωρ′,ι′

Let ρ′ρ−1 = si1 . . . sir be a decomposition in

elementary transpositions. Output

σε1
i1
. . . σεr

ir
with ε1, . . . , εr ∈ {±1}

computed using ι′.

22/24

Step 3: decomposition of the linearization in standard generators

ωρ,ι → ωρ,ι′

The induced braid is trivial, as the real part

of the strands is constant.

ωρ,ι′ → ωρ′,ι′

Let ρ′ρ−1 = si1 . . . sir be a decomposition in

elementary transpositions. Output

σε1
i1
. . . σεr

ir
with ε1, . . . , εr ∈ {±1}

computed using ι′.

22/24

Optimizations

Cell size

• Worst case, quadratic in the number of strands. But 1→ . . .→n has only n − 1 edges.

• In the algorithm presented, we never decrease the number of edges.

• Optimization: before inserting and edge between i and j , check if there is a

monochromatic path between i and j and in this case do not insert.

Combine all three steps

• In step 2, we perform multiple topological sorts, but the consecutive cells do not differ by

much (an edge deleted and a few inserted)

• Maintain a ωρ,ι and update ρ and ι on cell change.

• Done efficiently using a dynamical topological sort algorithm [Pearce and Kelly, 2007]

• We directly compute the braid of the consecutive ωρ,ι.

23/24

Conclusion

