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o Let g € C[t, 2] (n = deg,(g)),
WANN o define F(z) = g(t, z).
C, e Let b € C\X be a base point,

e let 7 :[0,1] — C\X be a loop starting
at

e The displacement of all roots of F;
when t moves along - defines a braid.

Input: g, v
Output: the associated braid in terms of

Artin's generators
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Configurations

Ordered configurations Configurations
OC, = {(x1,..., %) € C": Vi # j, xi # x;}. C, = {subsets of size n in C}.
Xl °
X o
X 2 o
3
X o

“Forget order” projection

T OC,, — Cn

Rk: equivalent definition is C, = 0C,/G&,,.
(.- yxn) = {x1,. ., X0}
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Braid group

Braid . . .

Homotopy class of a path : [0,1] — C, such
that 8(0) = 8(1) = {1,...,n}.

3/24



Braid group

Braid \

Homotopy class of a path : [0,1] — C, such

that 8(0) = A(1) = {1,...,n}. >

/

3/24



Braid group

Braid \

Homotopy class of a path : [0,1] — C, such
that 8(0) = 8(1) = {1,...,n}.

~

/

3/24



Braid group

Braid

Homotopy class of a path : [0,1] — C, such
that 8(0) = 8(1) = {1,...,n}.

3/24



Braid group

Braid 1

Homotopy class of a path : [0,1] — C, such
that 8(0) = 8(1) = {1,...,n}.

3/24



Braid group

Braid 1

Homotopy class of a path : [0,1] — C, such
that 8(0) = 8(1) = {1,...,n}.

In practice, we will manipulate paths in OC,.

3/24



Braid group

Braid 1 r
Homotopy class of a path : [0,1] — C, such
that 8(0) = B(1) ={1,...,n}.

In practice, we will manipulate paths in OC,.
Braid group B,

id: class of the constant path equal to {1,..., n}.
Law: [£1][B2] := [ - 2]

Rk: this is m1(Cs, {1,...,n}).
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Pseudo braids

Definition
Pseudo braid: homotopy class of a path
5 . [O, 1] — C,,. .
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We associate a braid to it by concatenating on
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get back to a loop around {1,...,n}.
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Artin’s theorem

AL N

KT

The o;'s generate B, (+ explicit relations).
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Artin’s theorem
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Certified homotopy continuation

Input: H:[0,1] x C" — C" and z € C" such that g
H(0,z) = 0.

There exists ¢ : [0,1] — C" such that H(t,{(t)) =0
and ((0) = z. Assume it is unique.
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Certified homotopy continuation

Input: H:[0,1] x C" — C" and z € C" such that
H(0,z) = 0.

There exists ¢ : [0,1] — C" such that H(t,{(t)) =0
and ((0) = z. Assume it is unique.

Output: A tubular neighborhood isolating (.

We can to that for every solution at t =0

Recall g € CJ[t, z] and ~ : [0,1] — C\X from first slide.
Apply certified homotopy continuation to
H(t, 2) = g(x(2), 2).
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Related work

Certified homotopy continuation
o Kearfott, R. B., & Xing, Z. (1994). An Interval Step Control for Continuation Methods.
e van der Hoeven, J. (2015). Reliable homotopy continuation.

e Xu, J., Burr, M., & Yap, C. (2018). An Approach for Certifying Homotopy Continuation
Paths: Univariate Case.

G., A., & Lairez, P. (2024). Validated Numerics for Algebraic Path Tracking.
e Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method.

Braid computations
e Rodriguez, J. |., & Wang, B. (2017).
e Marco-Buzunariz, M. A., & Rodriguez, M. (2016).
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Today’s goal

We now assume ¢ = ((1,...,¢n) ¢ [0,1] = OC, inducing a loop in C,

Goal

Input : ¢

Output : A decomposition in standard generators of the braid induced by (1, ..., ¢,
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Today’s goal

We now assume ¢ = ((1,...,¢n) ¢ [0,1] = OC, inducing a loop in C,
Goal

Input : ¢
Output : A decomposition in standard generators of the braid induced by (1, ..., ¢,

Overall strategy /
I We do not have access to ¢, not even to ¢(0).

1) Find a path fthat has same associated braid.

2) Decompose (.

010,
8/24



Algpath vs SIROCCO

SIROCCO [Marco-Buzunariz and Rodriguez, 2016]
e Tubular neighborhoods are piecewise linear.

e For each strand (;, computes a piecewise linear path
in the tube.

e ‘“Intuitive” (! non generic cases) algorithm on the
braid with piecewise linear strands.
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Algpath vs SIROCCO

SIROCCO [Marco-Buzunariz and Rodriguez, 2016]
e Tubular neighborhoods are piecewise

e For each strand (;, computes a piecewise linear path
in the tube.

e ‘“Intuitive” (! non generic cases) algorithm on the
braid with piecewise linear strands.

Algpath [G. and Lairez, 2024]

e Tubular neighborhoods are piecewise

Faster than SIROCCO,

! Finding a piecewise linear path in the tube requires

additional work.
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Interface

Strand separation

We assume a function sep(/, j, t) that returns
t' € (t,1] and a symbol in x € {—, +, —,+},
such that for all s € [t, t],

o Re(¢i(s)) < Re((j(s)) if ¥ =—,
e Re((i(s)) > Re(¢j(s)) if x = «,
o Im(¢i(s)) < Im(¢(s)) if x = —,
o Im(¢i(s)) > Im(¢(s)) if x = <, sep(i,j, t) = (t', =)
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Interface

Strand separation

We assume a function sep(/, j, t) that returns
t' € (t,1] and a symbol in x € {—, +, —,+},
such that for all s € [t, t],

e Re(Gi(s)) < Re(¢i(5)) if % = —,

* Re(Gi(s)) > Re((j(s)) if x = «,

o Im(¢i(s)) < Im(¢(s)) if x = —,

o Im(Gi(s)) > Tm(¢i(s)) if % = sep(i.j,£) = (¢, )
Monodromy m(¢(0)) = 7(¢(1)) = Jo € &, s.t.
We assume a fonction monodromy() that returns for all i € [1,n], ¢i(1) = Coi)(0).

the monodromy permutation of (.
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Recall: OC, = {(x1,...,xp) € C": Vi # j, xi # x;}.

Definition

A cell is a pair ¢ = (R, /) of relations on {1,...,n}.
We associate to it a topological space |c| C OC,
whose points are (xi,...,x,) € OC, such that

o for all (/,/) € R, Re(xi) < Re(x;),
e for all (i,)) € I, Im(x;) < Im(x;),

Notation
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Recall: OC, = {(x1,...,xp) € C": Vi # j, x; # x;}.

Definition

A cell is a pair ¢ = (R, /) of relations on {1,...,n}.

We associate to it a topological space |c| € OC, c=(2,9): |c| = 0C,,
whose points are (xi,...,x,) € OC, such that

P 2 p 5
o for all (/,/) € R, Re(xi) < Re(x;), \“/ '\ /
e for all (i,)) € I, Im(x;) < Im(x;), : s

Notation (4,9_,340 glel ) = @
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Properties of cells

Empty cells
A cell is empty if and only if there is a cycle
in Rorin /.

Convex cells

A (non-empty) cell is convex if and only if for
all i,j € {1,...,n}, either i—*j or j—*i or
i—*j or j—*i. We call this graph property
“monochromatic semi-connectedness” (m.s.c.
for short).

Intersection of cells

Given ¢ = (R, /) and ¢’ = (R, I") two cells,
the space associated to (RUR', I UI") is
el e’

lcl + P lel =@

/Iﬁl /Iﬁ?.

we——

Ge— G 3

lcl onvex lcl not convex
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Linearization using convex cells

L)

Idea

13/24



Linearization using convex cells

Idea

1. Compute a squence of convex cells covering ¢

13/24



Linearization using convex cells

Idea
1. Compute a squence of convex cells covering ¢

2. Find a simplified path covered by the same cells for
which the braid is easy to compute

13/24



Linearization using convex cells

Idea
1. Compute a squence of convex cells covering ¢

2. Find a simplified path covered by the same cells for
which the braid is easy to compute

13/24



Linearization using convex cells

Idea
1. Compute a squence of convex cells covering ¢

2. Find a simplified path covered by the same cells for
which the braid is easy to compute

e We use sep to compute the sequence of cells

e Correction: convexity of the cells
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Step 1: compute a sequence of cells

def path to_cells(¢ = ((i,-.-,Cn)):

c (1~9>2~9>... E@/7,Q5)

res < ||

loop:
res.append(c)
i,j,t <+ c.pop()
if t = 1: break
t',x < C.sep(i,Jj, t) —
c.insert(i,j, t’', %)

Repair monochromatic semi-connectedness

return res
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Repair monochromatic semi-connectedness?

loop: 0.1
res.append(c)

i,j,t < c.pop()
if t = 1: break
t',x < (.sep(i, ], t)
c.insert(i,j, t’', %)

Repair monochromatic semi-connectedness 2
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Repair monochromatic semi-connectedness?

loop: 0.1
res.append(c)

i,j,t < c.pop()

if t = 1: break 06
t',x < (.sep(i, ], t)

c.insert(i,j, t’', %)
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Repair monochromatic semi-connectedness?

loop: 0.1
res.append(c)

i,j,t < c.pop()
if t = 1: break
t',x < (.sep(i, ], t)
c.insert(i,j, t’', %)

. . . AL
Repair monochromatic semi-connectedness 2
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Repair monochromatic semi-connectedness!
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Repair monochromatic semi-connectedness!

. t £

[

/

(gnd
VYV L

<« .
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Step 2: linearize (

Definition
Let p,t € G,,. We define
wp, = (p(1) +ie(1),. ..

oy

®)

o3
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How do we find the w,, in intersecion of cells?

Problem
c = (R, ) nonempty cell. Find p, ¢ such that
wp,. € Ic].

Solution
Extend R and / to total orders ( “topological
sort™).
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How do we find the w,, in intersecion of cells?

/ \L /__)4)3)“2

.,

[V

Problem

c = (R, ) nonempty cell. Find p, ¢ such that 21,3,
J 7 J

~>
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Solution
Extend R and / to total orders ( “topological
sort™).

18/24



How do we find the w,, in intersecion of cells?

Problem

c = (R, ) nonempty cell. Find p, ¢ such that
wp,. € Ic].

Solution

Extend R and / to total orders ( “topological

sort™).

/ \L /__)4)3)“2

N

(o)

4)2J3)(1

()

~>

= (-'Jp‘l, é ‘C\
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Algorithm

def linearize(()

cells «+ (.path_to_cells()

res < [(1,1)] %09 Y

for each pair of successive cells ¢, ¢cj11 in cells:
Compute p, ¢ such that w,, € |¢i| N |ci41]
res.append((p, ¢))

o < (.monodromy()

res.append((a, ¢))

return res
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Main property of linearize

Proposition

The braid associated to ¢ and to the linear
interpolation of the result of (.1inearize()
are equal
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Step 3: decomposition of the linearization in standard generators

Reduction / Wyt \

e Computing the braid associated to the whole /
linearization or to each piece and concatenating
the results is equivalent \
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extend /.
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Step 3: decomposition of the linearization in standard generators

—_ \
Reduction / Wyt .
e Computing the braid associated to the whole /
linearization or to each piece and concatenating | \\
the results is equivalent \
e Assume w,, and w, ,» both lie in a m.s.c cell \
c = (R, ). It means that p, p’ extend R and ¢,/ \ \
extend /.
. U , ]
e We compute the braid of w,, — w, / then the oy
braid of w, ./ — wpy v . /
~__ 5
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Step 3: decomposition of the linearization in standard generators

L] L]
| i 3
. | . T
§ > I § o
|
* d . 1 i
03 .I !

w,

Gayse), (1403) Lanise) (43)
Wp,o = Wp,u

The induced braid is trivial, as the real part
of the strands is constant.
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L) | . . L)
t | 3 ! !

] | . | . -2

§ > I § I § _ §
|
g D A 3 7
03 .I 03 uge _____
L), (143) Wauie) (43) Luna), (113) w(u;))(m)

Wp,u = Wp,u!
The induced braid is trivial, as the real part

of the strands is constant.
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Step 3: decomposition of the linearization in standard generators

. i 03 . .
] | . T . -2
1 > I § : 1 - §
.’ 'd 2l | . 7 z’lV._"lE_ m——e,
03 .I ! .3 .3& _____
L), (143) Lanise) (43) l v;" | |
. R
Wp,u = Wp,u! '
X X i L. - e L)
The induced braid is trivial, as the real part § R §
L] ->e
of the strands is constant. z . z
[ ] .3
Wp,u! —> Wp' 1! ‘L v;:[ T s
Let p'p~! = s, ...s; be a decomposition in e .
om0 1
elementary transpositions. Output . ' .
€1 Er \ith - § §
o ...0; with e1,...,¢e, € {£1} . T Srey
computed using ¢'. !
. &— s —

3 3 22/24



Optimizations

Cell size

e Worst case, quadratic in the number of strands. But 1—...—n has only n — 1 edges.
e In the algorithm presented, we never decrease the number of edges.

e Optimization: before inserting and edge between i and j, check if there is a
monochromatic path between i and j and in this case do not insert.

Combine all three steps

e In step 2, we perform multiple topological sorts, but the consecutive cells do not differ by
much (an edge deleted and a few inserted)

e Maintain a w,, and update p and ¢ on cell change.
e Done efficiently using a dynamical topological sort algorithm [Pearce and Kelly, 2007]

e We directly compute the braid of the consecutive w, ,.
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Conclusion

~/2025/code/braid_group cargo run --release
Finished ‘release’ profile [optimized] target(s) in 0.08s
Running 'target/release/braid_group’
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