## Braid monodromy computations using certified path tracking

Alexandre Guillemot Joint work with Pierre Lairez MATHEXP, Inria, France

Séminaire Pascaline September 25, 2025 | École Normale Supérieure de Lyon









- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



#### Setup

- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.

#### Algorithmic goal

Input: g,  $\gamma$ 

**Output:** the associated braid in terms of Artin's generators

# Configurations

### **Ordered configurations**

Of the end configurations 
$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

## Configurations

$$C_n = \{ \text{subsets of size } n \text{ in } \mathbb{C} \}.$$





## "Forget order" projection

$$\pi: OC_n \rightarrow C_n (x_1, \dots, x_n) \mapsto \{x_1, \dots, x_n\}.$$

Rk: equivalent definition is  $C_n = OC_n/\mathfrak{S}_n$ .

### **Braid**



## **Braid**



## **Braid**



### **Braid**



### **Braid**



### **Braid**

Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .



#### **Braid**

Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .

## Braid group $B_n$

id: class of the constant path equal to  $\{1,\ldots,n\}$ . Law:  $[\beta_1][\beta_2]:=[\beta_1\cdot\beta_2]$ 

Rk: this is  $\pi_1(C_n, \{1, ..., n\})$ .



#### **Braid**

Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .

## Braid group $B_n$

id: class of the constant path equal to  $\{1, \ldots, n\}$ . Law:  $[\beta_1][\beta_2] := [\beta_1 \cdot \beta_2]$ 

Rk: this is  $\pi_1(C_n, \{1, ..., n\})$ .



#### **Braid**

Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .

## Braid group $B_n$

id: class of the constant path equal to  $\{1, \ldots, n\}$ . Law:  $[\beta_1][\beta_2] := [\beta_1 \cdot \beta_2]$ 

Rk: this is  $\pi_1(C_n, \{1, ..., n\})$ .



## **Definition**

Pseudo braid: homotopy class of a path

$$\beta: [0,1] \rightarrow C_n$$
.

\_









## Definition

Pseudo braid: homotopy class of a path

$$\beta: [0,1] \rightarrow C_n$$
.



#### **Definition**

Pseudo braid: homotopy class of a path  $\beta: [0,1] \to C_n$ .

We associate a braid to it by concatenating on top and on bottom specific pseudo-braids to get back to a loop around  $\{1, \ldots, n\}$ .



#### **Definition**

Pseudo braid: homotopy class of a path  $\beta: [0,1] \to C_n$ .

We associate a braid to it by concatenating on top and on bottom specific pseudo-braids to get back to a loop around  $\{1,\ldots,n\}$ .



### Artin's theorem





## Theorem [Artin, 1947]

The  $\sigma_i$ 's generate  $B_n$  (+ explicit relations).

## Artin's theorem



### Theorem [Artin, 1947]

The  $\sigma_i$ 's generate  $B_n$  (+ explicit relations).



$$\sigma_4 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_3 \sigma_1 \sigma_2 \sigma_3^{-1}$$

### **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(t,\zeta(t))=0$  and  $\zeta(0)=z$ . Assume it is unique.



### **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1] o \mathbb{C}^r$  such that  $H(t,\zeta(t))=0$ 

and  $\zeta(0) = z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .



#### **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(t,\zeta(t))=0$  and  $\zeta(0)=z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .



### Certified homotopy continuation

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(t,\zeta(t))=0$  and  $\zeta(0)=z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .

We can to that for every solution at t = 0



## Certified homotopy continuation

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(t,\zeta(t))=0$  and  $\zeta(0)=z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .

We can to that for every solution at t=0

## **Application**

Recall  $g \in \mathbb{C}[t,z]$  and  $\gamma:[0,1] \to \mathbb{C} \setminus \Sigma$  from first slide. Apply certified homotopy continuation to  $H(t,z) = g(\gamma(t),z)$ .



### Related work

#### Certified homotopy continuation

- Kearfott, R. B., & Xing, Z. (1994). An Interval Step Control for Continuation Methods.
- van der Hoeven, J. (2015). Reliable homotopy continuation.
- Xu, J., Burr, M., & Yap, C. (2018). An Approach for Certifying Homotopy Continuation Paths: Univariate Case.
- G., A., & Lairez, P. (2024). Validated Numerics for Algebraic Path Tracking.
- Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method.

### **Braid computations**

- Rodriguez, J. I., & Wang, B. (2017). Numerical computation of braid groups.
- Marco-Buzunariz, M. Á., & Rodríguez, M. (2016). SIROCCO: a library for certified polynomial root continuation.

We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\pi(\zeta(0)) = \pi(\zeta(1))$ .

#### Goal

**Input :**  $\zeta$  (n disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ )

**Output :** A decomposition in standard generators of the braid induced by  $\zeta_1,\ldots,\zeta_n$ 

We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\pi(\zeta(0)) = \pi(\zeta(1))$ .

#### Goal

**Input**:  $\zeta$  (n disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ )

**Output:** A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ 

### **Overall strategy**

• We do not have access to  $\zeta$ , not even to  $\zeta(0)$ .



We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\pi(\zeta(0)) = \pi(\zeta(1))$ .

#### Goal

**Input**:  $\zeta$  (n disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ )

**Output**: A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ 

## **Overall strategy**

• We do not have access to  $\zeta$ , not even to  $\zeta(0)$ .

1) Find a path  $\tilde{\zeta}$  that has same associated braid.



We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\pi(\zeta(0)) = \pi(\zeta(1))$ .

#### Goal

**Input :**  $\zeta$  (n disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ )

**Output**: A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ 

## **Overall strategy**

- We do not have access to  $\zeta$ , not even to  $\zeta(0)$ .
- 1) Find a path  $\tilde{\zeta}$  that has same associated braid.
- 2) Decompose  $\tilde{\zeta}$ .



# Algpath vs SIROCCO

### SIROCCO [Marco-Buzunariz and Rodríguez, 2016]

- Tubular neighborhoods are piecewise linear.
- For each strand  $\zeta_i$ , computes a piecewise linear path in the tube.
- "Intuitive" (I non generic cases) algorithm on the braid with piecewise linear strands.



## Algpath vs SIROCCO

### SIROCCO [Marco-Buzunariz and Rodríguez, 2016]

- Tubular neighborhoods are piecewise linear.
- For each strand  $\zeta_i$ , computes a piecewise linear path in the tube.
- "Intuitive" (I non generic cases) algorithm on the braid with piecewise linear strands.

### Algpath [G. and Lairez, 2024]

- Tubular neighborhoods are piecewise cubic.
- Faster than SIROCCO,
- Finding a piecewise linear path in the tube requires additional work.



### **Interface**

### Strand separation

We assume a function  $\operatorname{sep}(i,j,t)$  that returns  $t' \in (t,1]$  and a symbol in  $\star \in \{\rightarrow,\leftarrow,\rightarrow,\leftarrow\}$ , such that for all  $s \in [t,t']$ ,

- $\operatorname{Re}(\zeta_i(s)) < \operatorname{Re}(\zeta_i(s))$  if  $\star = \rightarrow$ ,
- $\operatorname{Re}(\zeta_i(s)) > \operatorname{Re}(\zeta_i(s))$  if  $\star = \leftarrow$ ,
- $\operatorname{Im}(\zeta_i(s)) < \operatorname{Im}(\zeta_j(s))$  if  $\star = \rightarrow$ ,
- $\operatorname{Im}(\zeta_i(s)) > \operatorname{Im}(\zeta_j(s))$  if  $\star = \leftarrow$ ,



$$\operatorname{\mathsf{sep}}(i,j,t) = (t', \to)$$

### **Interface**

### Strand separation

We assume a function  $\operatorname{sep}(i,j,t)$  that returns  $t' \in (t,1]$  and a symbol in  $\star \in \{\to, \leftarrow, \to, \leftarrow\}$ , such that for all  $s \in [t,t']$ ,

- $\operatorname{Re}(\zeta_i(s)) < \operatorname{Re}(\zeta_j(s))$  if  $\star = \rightarrow$ ,
- $\operatorname{Re}(\zeta_i(s)) > \operatorname{Re}(\zeta_j(s))$  if  $\star = \leftarrow$ ,
- $\operatorname{Im}(\zeta_i(s)) < \operatorname{Im}(\zeta_j(s))$  if  $\star = \rightarrow$ ,
- $\operatorname{Im}(\zeta_i(s)) > \operatorname{Im}(\zeta_j(s))$  if  $\star = \leftarrow$ ,

### Monodromy

We assume a fonction monodromy() that returns the monodromy permutation of  $\zeta$ .



$${\tt sep}(i,j,t)=(t',\rightarrow)$$

$$\pi(\zeta(0)) = \pi(\zeta(1)) \Rightarrow \exists \sigma \in \mathfrak{S}_n \text{ s.t.}$$
 for all  $i \in [1, n]$ ,  $\zeta_i(1) = \zeta_{\sigma(i)}(0)$ .

### Cells

Recall: 
$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

#### **Definition**

A cell is a pair c=(R,I) of relations on  $\{1,\ldots,n\}$ . We associate to it a topological space  $|c|\subseteq OC_n$  whose points are  $(x_1,\ldots,x_n)\in OC_n$  such that

- for all  $(i,j) \in R$ ,  $\operatorname{Re}(x_i) < \operatorname{Re}(x_j)$ ,
- for all  $(i,j) \in I$ ,  $\operatorname{Im}(x_i) < \operatorname{Im}(x_j)$ ,

#### **Notation**

- $i \rightarrow_c j \iff (i,j) \in R$
- $i \rightarrow_c j \iff (i,j) \in I$

### Cells

Recall: 
$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

#### Definition

A cell is a pair c=(R,I) of relations on  $\{1,\ldots,n\}$ . We associate to it a topological space  $|c|\subseteq OC_n$  whose points are  $(x_1,\ldots,x_n)\in OC_n$  such that

- for all  $(i,j) \in R$ ,  $\operatorname{Re}(x_i) < \operatorname{Re}(x_j)$ ,
- for all  $(i,j) \in I$ ,  $\operatorname{Im}(x_i) < \operatorname{Im}(x_j)$ ,

#### **Notation**

- $i \rightarrow_c j \iff (i,j) \in R$
- $i \rightarrow_c j \iff (i,j) \in I$



## Properties of cells

### **Empty cells**

A cell is empty if and only if there is a cycle in R or in I.

#### Convex cells

A (non-empty) cell is convex if and only if for all  $i, j \in \{1, \ldots, n\}$ , either  $i \rightarrow *j$  or  $j \rightarrow *i$  or  $i \rightarrow *j$  or  $j \rightarrow *i$ . We call this graph property "monochromatic semi-connectedness" (m.s.c. for short).

### Intersection of cells

Given c = (R, I) and c' = (R', I') two cells, the space associated to  $(R \cup R', I \cup I')$  is  $|c| \cap |c'|$ .





### Idea

1. Compute a squence of convex cells covering  $\boldsymbol{\zeta}$ 



- 1. Compute a squence of convex cells covering  $\zeta$
- 2. Find a simplified path covered by the same cells for which the braid is easy to compute



- 1. Compute a squence of convex cells covering  $\zeta$
- 2. Find a simplified path covered by the same cells for which the braid is easy to compute



- 1. Compute a squence of convex cells covering  $\zeta$
- 2. Find a simplified path covered by the same cells for which the braid is easy to compute
- We use sep to compute the sequence of cells
- Correction: convexity of the cells



## Step 1: compute a sequence of cells

```
def path_to_cells(\zeta = (\zeta_1, \ldots, \zeta_n)):
 1 c \leftarrow (1 \xrightarrow{0} 2 \xrightarrow{0} \dots \xrightarrow{0} n, \varnothing) \# assume that \text{Re}(\zeta_1(0)) < \dots < \text{Re}(\zeta_n(0))
 2 res ← []
     loop:
         res.append(c)
         i, j, t \leftarrow c.pop() # pops the edge with minimal label in c
         if t = 1: break
         t', \star \leftarrow \zeta.sep(i, j, t) \# \star \in \{\rightarrow, \leftarrow, \rightarrow, \leftarrow\}
         c.insert(i, j, t', \star)
 8
          Repair monochromatic semi-connectedness # i.e. convexity
 9
         \# c is convex and contains \zeta on [t, s] where s is the smallest time label in c
     return res
```

## Repair monochromatic semi-connectedness?

#### 1 loop:

- res.append(c)
- $i, j, t \leftarrow c.pop()$
- if t = 1: break
- 5  $t', \star \leftarrow \zeta.sep(i, j, t)$
- 6  $c.insert(i, j, t', \star)$
- 7 Repair monochromatic semi-connectedness



## Repair monochromatic semi-connectedness?

#### 1 loop:

- res.append(c)
- $i, j, t \leftarrow c.pop()$
- 4 if t = 1: break
- 5  $t', \star \leftarrow \zeta.sep(i, j, t)$
- 6  $c.insert(i, j, t', \star)$
- 7 Repair monochromatic semi-connectedness



# Repair monochromatic semi-connectedness?

#### 1 loop:

- res.append(c)
- $i, j, t \leftarrow c.pop()$
- 4 if t = 1: break
- 5  $t', \star \leftarrow \zeta.sep(i, j, t)$
- 6  $c.insert(i, j, t', \star)$
- 7 Repair monochromatic semi-connectedness



# Repair monochromatic semi-connectedness!



# Repair monochromatic semi-connectedness!



# Repair monochromatic semi-connectedness!



# Step 2: linearize $\zeta$

### **Definition**

Let  $\rho, \iota \in \mathfrak{S}_n$ . We define

$$\omega_{
ho,\iota}=(
ho(1)+\mathrm{i}\iota(1),\ldots,
ho(n)+\mathrm{i}\iota(n))\in \mathit{OC}_n$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \\
\iota = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \\
\vdots \\
\bullet_1 \\
\vdots \\
\bullet_1$$









#### **Problem**

c=(R,I) nonempty cell. Find  $\rho,\iota$  such that  $\omega_{\rho,\iota}\in |c|.$ 

#### Solution



c=(R,I) nonempty cell. Find  $\rho,\iota$  such that  $\omega_{\rho,\iota}\in |c|.$ 

### **Solution**



#### **Problem**

c=(R,I) nonempty cell. Find  $\rho,\iota$  such that  $\omega_{\rho,\iota}\in |c|.$ 

#### Solution



#### **Problem**

c=(R,I) nonempty cell. Find  $\rho,\iota$  such that  $\omega_{\rho,\iota}\in |c|.$ 

### Solution





## **Algorithm**

```
def linearize(⟨⟨)
    cells \leftarrow \zeta.path_to_cells()
   res \leftarrow [(1,1)] \# \omega_{1,1} \in (1 \xrightarrow{0} 2 \xrightarrow{0} \dots \xrightarrow{0} n, \varnothing) the first element of cells
    for each pair of successive cells c_i, c_{i+1} in cells:
         Compute \rho, \iota such that \omega_{\rho, \iota} \in |c_i| \cap |c_{i+1}|
         res.append((\rho, \iota))
6 \sigma \leftarrow \zeta.monodromy() \# \zeta_i(1) = \zeta_{\sigma(i)}(0)
   res.append((\sigma, \iota))
    return res
```

### **Proposition**



```
 \begin{split} & \dots \\ & \textit{res} \leftarrow \texttt{[(1,1)]} \ \# \ \omega_{1,1} \in (1 \xrightarrow{\texttt{0}} 2 \xrightarrow{\texttt{0}} \dots \xrightarrow{\texttt{0}} n, \varnothing) \\ & \dots \\ & \sigma \leftarrow \zeta.\texttt{monodromy()} \ \# \ \zeta_i(1) = \zeta_{\sigma(i)}(0) \\ & \textit{res.append((\sigma,\iota))}  \end{split}
```

### **Proposition**



```
 \begin{split} & \dots \\ & \textit{res} \leftarrow \texttt{[(1,1)]} \ \# \ \omega_{1,1} \in (1 \xrightarrow{\texttt{0}} 2 \xrightarrow{\texttt{0}} \dots \xrightarrow{\texttt{0}} n, \varnothing) \\ & \dots \\ & \sigma \leftarrow \zeta.\texttt{monodromy()} \ \# \ \zeta_i(1) = \zeta_{\sigma(i)}(0) \\ & \textit{res.append((\sigma,\iota))}  \end{split}
```

### **Proposition**



```
 \begin{split} & \dots \\ & \textit{res} \leftarrow \texttt{[(1,1)]} \ \# \ \omega_{1,1} \in (1 \xrightarrow{\texttt{0}} 2 \xrightarrow{\texttt{0}} \dots \xrightarrow{\texttt{0}} n, \varnothing) \\ & \dots \\ & \sigma \leftarrow \zeta.\texttt{monodromy()} \ \# \ \zeta_i(1) = \zeta_{\sigma(i)}(0) \\ & \textit{res.append((\sigma,\iota))}  \end{split}
```

### **Proposition**



#### Reduction

• Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent



#### Reduction

- Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent
- Assume  $\omega_{\rho,\iota}$  and  $\omega_{\rho',\iota'}$  both lie in a m.s.c cell c=(R,I). It means that  $\rho,\rho'$  extend R and  $\iota,\iota'$  extend I. So  $\omega_{\rho,\iota'}$  also lies in c!



#### Reduction

- Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent
- Assume  $\omega_{\rho,\iota}$  and  $\omega_{\rho',\iota'}$  both lie in a m.s.c cell c=(R,I). It means that  $\rho,\rho'$  extend R and  $\iota,\iota'$  extend I. So  $\omega_{\rho,\iota'}$  also lies in c!
- We compute the braid of  $\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$  then the braid of  $\omega_{\rho,\iota'} \to \omega_{\rho',\iota'}$





$$\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$$

The induced braid is trivial, as the real part of the strands is constant.





$$\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$$

The induced braid is trivial, as the real part of the strands is constant.



$$\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$$

The induced braid is trivial, as the real part of the strands is constant.

$$\omega_{\rho,\iota'} \to \omega_{\rho',\iota'}$$

Let  $\rho' \rho^{-1} = s_{i_1} \dots s_{i_r}$  be a decomposition in elementary transpositions. Output  $\sigma_{i_1}^{\varepsilon_1} \dots \sigma_{i_r}^{\varepsilon_r}$  with  $\varepsilon_1, \dots, \varepsilon_r \in \{\pm 1\}$  computed using  $\iota'$ .



### **Optimizations**

#### Cell size

- Worst case, quadratic in the number of strands. But  $1 \rightarrow \ldots \rightarrow n$  has only n-1 edges.
- In the algorithm presented, we never decrease the number of edges.
- Optimization: before inserting and edge between *i* and *j*, check if there is a monochromatic path between *i* and *j* and in this case do not insert.

### Combine all three steps

- In step 2, we perform multiple topological sorts, but the consecutive cells do not differ by much (an edge deleted and a few inserted)
- Maintain a  $\omega_{\rho,\iota}$  and update  $\rho$  and  $\iota$  on cell change.
- Done efficiently using a dynamical topological sort algorithm [Pearce and Kelly, 2007]
- We directly compute the braid of the consecutive  $\omega_{\rho,\iota}$ .

### Conclusion

~/2025/code/braid\_group cargo run --release

Finished `release` profile [optimized] target(s) in 0.08s

 $\frac{1}{1000}$ 

Running `target/release/braid group 05 7 01 1 02 5 02 9 04 7 05 1 05 5 06 1 06 3 08 3 03 05 04 1 03 1 03 5 00 1 1 01 00 03 7 07 3 09 7 09 8 02 7 04 9 08 7 09 7 1 05 9 01 5 02 03 1 1 09 6 1 07 7 09 2  $\frac{1}{9}$   $\frac{1}$  $\frac{1}{1093023016}$  $\frac{1}{082}$   $\frac{1}{082}$   $\frac{1}{082}$   $\frac{1}{092}$   $\frac{1}$  $92^{-1}991078^{-1}013^{-1}014070^{-1}069070059^{-1}021083079^{-1}080^{-1}092071015023^{-1}017^{-1}09^{-1}018010019081^{-1}018093092^{-1}$  $017084083^{-1}082^{-1}083^{-1}084^{-1}016072079^{-1}012^{-1}076^{-1}013085^{-1}073086^{-1}036074081087^{-1}088^{-1}015089^{-1}0140870130$  $12017^{-1}018028090^{-1}091^{-1}078092^{-1}093^{-1}094^{-1}095^{-1}098097092^{-1}096^{-1}097^{-1}024098^{-1}094075029^{-1}015076088087^{-1}$  $03369569469369261167767868667^{-1}69169067968061069619^{-1}679^{-1}68467^{-1}6867630678666865691631^{-1}6896468168$  $\frac{1}{9}$   $\frac{1}$  $^{1}$  03  $^{2}$   $^{1}$  03  $^{2}$  06  $^{2}$  06  $^{3}$  06  $^{2}$  06  $^{3}$   $^{1}$  05  $^{2}$  06  $^{3}$  06  $^{3}$  07  $^{1}$  07  $^{2}$  07  $^{3}$  07  $^{3}$  07  $^{3}$  07  $^{4}$  07  $^{3}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $053644^{-1}072^{-1}073645026025^{-1}084^{-1}074^{-1}075086076^{-1}077052051^{-1}038085050049^{-1}024^{-1}023046^{-1}047078^{-1}07909$ 6 09 2 06 02 3 05 4 06 6  $^{-1}$  08 8  $^{-1}$  09 4  $^{-1}$  02 03 2  $^{-1}$  04 9 05 0  $^{-1}$  03 8  $^{-1}$  01 0 02 6  $^{-1}$  05 6  $^{-1}$  05 8  $^{-1}$  07 2 04 4 05 1  $^{-1}$  08 5 06 0  $^{-1}$  05 2 01 2 09 6  $^{-1}$  $645644^{-1}624623^{-1}617653654^{-1}623624^{-1}677676^{-1}686675684^{-1}642643642^{-1}655^{-1}656662^{-1}674^{-1}625^{-1}625675672^{-1}66675684^{-1}642643642^{-1}655^{-1}656662^{-1}674^{-1}625^{-1}6256773672^{-1}66675684^{-1}6426643642^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}6466676687^{-1}64666767687^{-1}64666767^{-1}6466767^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}6467^{-1}6467^{-1}64667^{-1}64667^{-1}64667^{-1}6467^{-1}64667^{-1}64667^{-1}64$  $57^{-1}058038060061060^{-1}059^{-1}022049^{-1}041^{-1}014^{-1}015^{-1}014023^{-1}060061^{-1}040013012^{-1}085^{-1}062039038^{-1}074073^{-1}$ 03.7 - 06.0 - 063.064 - 036.035.034 - 081 - 065.072.026 - 072.026 - 072.083.024.025 - 072.6082 - 084.072.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 07333 <sup>-1</sup> 02 3 02 2 <sup>-1</sup> 01 9 <sup>-1</sup> 02 0 <sup>-1</sup> 01 9 07 09 6 03 1 <sup>-1</sup> 09 5 09 4 09 3 09 2 08 5 03 0 06 7 <sup>-1</sup> 06 8 08 <sup>-1</sup> 07 1 <sup>-1</sup> 02 0 09 1 09 0 07 5 <sup>-1</sup> 07 6 07 5 08 7 07 7 <sup>-1</sup> 0  $88076^{-1}089088087086085081047^{-1}098^{-1}097^{-1}029^{-1}028096^{-1}084094095^{-1}094^{-1}093^{-1}083082081091092^{-1}091^{-1}099^{-1}089088087088087088081091092^{-1}091^{-1}099^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091$  $^{1}$ 078088089 $^{-1}$ 088 $^{-1}$ 079 $^{-1}$ 087 $^{-1}$ 082 $^{-1}$ 086 $^{-1}$ 0102059 $^{-1}$ 060077018017 $^{-1}$ 085 $^{-1}$ 084 $^{-1}$ 083 $^{-1}$ 082 $^{-1}$ 078 $^{-1}$ 0304088080089 $^{-1}$  $\sigma_{18}^{-1}\sigma_{19}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{19}\sigma_{69}^{-1}\sigma_{79}\sigma_{84}\sigma_{16}^{-1}\sigma_{78}\sigma_{96}\sigma_{77}\sigma_{70}\sigma_{81}^{-1}\sigma_{5}\sigma_{6}\sigma_{80}^{-1}\sigma_{70}\sigma_{80}^{-1}\sigma_{11}^{-1}\sigma_{94}^{-1}\sigma_{79}^{-1}\sigma_{75}^{-1}\sigma_{76}\sigma_{75}\sigma_{78}^{-1}\sigma_{17}^{-1}\sigma_{79}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1$  $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{0}$   $^{1}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{1}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $5^{-1}$   $674^{-1}$   $69^{-1}$   $673^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $\sigma_{11}^{-1}\sigma_{16}\sigma_{70}^{-1}\sigma_{17}\sigma_{88}^{-1}\sigma_{95}\sigma_{96}^{-1}\sigma_{11}^{-1}\sigma_{12}^{-1}\sigma_{15}^{-1}\sigma_{27}^{-1}\sigma_{13}^{-1}\sigma_{14}^{-1}\sigma_{15}^{-1}\sigma_{16}^{-1}\sigma_{94}\sigma_{95}^{-1}\sigma_{18}\sigma_{19}\sigma_{86}\sigma_{15}^{-1}\sigma_{26}\sigma_{68}\sigma_{67}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{$  $\sigma_{11}$   $^{-1}\sigma_{8}$   $^{-1}\sigma_{13}$   $\sigma_{14}$   $^{-1}\sigma_{16}$   $^{-1}\sigma_{17}$   $^{-1}\sigma_{18}$   $^{-1}\sigma_{11}$   $^{-1}\sigma_{11}$   $^{-1}\sigma_{12}$   $^{-1}\sigma_{13}$   $^{-1}\sigma_{13}$   $^{-1}\sigma_{12}$   $^{-1}\sigma_{13}$   $^{-1}\sigma_{12}$   $^{-1}\sigma_{13}$   $^{-1}\sigma_{12}$   $^{-1}\sigma_{13}$   $^{-1}\sigma_{13}$  $92^{-1}$ 088021 $^{-1}$ 089 $^{-1}$ 023020021022021020087088 $^{-1}$ 023019 $^{-1}$ 060 $^{-1}$ 0721 $^{-1}$ 0722 $^{-1}$ 05 $^{-1}$ 04093 $^{-1}$ 0720 $^{-1}$ 094065

 $\sigma_{13}\sigma_{95}\sigma_{96}^{-1}\sigma_{2}\sigma_{3}\sigma_{2}^{-1}\sigma_{1}\sigma_{0}^{-1}\sigma_{1}^{-1}\sigma_{3}^{-1}\sigma_{7}^{-1}\sigma_{9}^{-1}\sigma_{13}^{-1}\sigma_{17}^{-1}\sigma_{19}^{-1}\sigma_{21}^{-1}\sigma_{23}^{-1}\sigma_{33}^{-1}\sigma_{35}^{-1}\sigma_{39}^{-1}\sigma_{43}^{-1}\sigma_{45}^{-1}\sigma_{53}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1$ 

