Polynomial approximation with size-constrained coefficients

Tom Hubrecht,

with Nicolas Brisebarre, Sylvain Chevillard, Guillaume Hanrot, Serge Torres

Jeu. 04 septembre 2025: Séminaire Pascaline

What is it about

• Polynomial approximation: Given $f:I\subset\mathbb{R}\to\mathbb{R}$, find $P\in\mathbb{R}_n[X]$ "close" to f

What is it about

• Polynomial approximation: Given $f:I\subset\mathbb{R}\to\mathbb{R}$, find $P\in\mathbb{R}_n[X]$ "close" to f

 Size-constrained coefficients: That can be represented on some finite amount of memory (e.g. 64 bits)

But why?

Numerical evaluation of functions

We want to:

• evaluate numerically various mathematical functions

Numerical evaluation of functions

We want to:

• evaluate numerically various mathematical functions

• use computers to do the work

Limited precision of machine numbers

$$\hat{x} = (-1)^s \times 2^e \times 1.f$$

$$log(2) \approx 0.693147180559945$$
 $o(log(2)) = 0x1.62e42fefa39efp-1$

Where o(x) is the closest floating-point number to x

Some basic arithmetic operations

The operations at our disposal are: +, \times , -, \sqrt{x} ,

Some basic arithmetic operations

The operations at our disposal are: +, \times , -, \sqrt{x} ,

We need to use approximations to compute numerical values of functions.

Some basic arithmetic operations

The operations at our disposal are: +, \times , -, \sqrt{x} ,

We need to use approximations to compute numerical values of functions.

In most cases, we work with polynomial approximations:

$$\exp(z) \approx a_0 + z \times (a_1 + z \times (a_2 + z \times (a_3 + z \times a_4)))$$

• All programs use libraries: sets of (mostly) standard functions to avoid reinventing the wheel (and making mistakes).

- All programs use libraries: sets of (mostly) standard functions to avoid reinventing the wheel (and making mistakes).
- To compute mathematical functions, there are "libm"s implementing exp, log, sin, ...

- All programs use libraries: sets of (mostly) standard functions to avoid reinventing the wheel (and making mistakes).
- To compute mathematical functions, there are "libm"s implementing exp, log, sin, ...
- List of mathematical functions defined in standards as IEEE754, ISO/IEC 9899

- All programs use libraries: sets of (mostly) standard functions to avoid reinventing the wheel (and making mistakes).
- To compute mathematical functions, there are "libm"s implementing exp, log, sin, ...
- List of mathematical functions defined in standards as IEEE754, ISO/IEC 9899
- Several of them coexist: glibc, LLVM math library, CORE-MATH, ...

Libm constraints

• Speed is a big requirement, those functions will be used more than 100M times

Accuracy varies and is not always defined

Correct Rounding

The evaluation \hat{f} of a function f is correctly rounded if $\hat{f}(x)$ is the closest floating-point value to f(x) for all x.

It is necessary in multiple domains:

- Distributed computations, HPC
- Any application requiring reproducible results

But, it is a much harder property to guarantee than, e.g., "52 bits of precision" out of the 53 bits of doubles

Building a libm function

Three steps are usually observed:

- 1. Range reduction: go from $\mathbb R$ to I a small segment for the inputs
 - Using various equalities: e.g. $\log(2^k x) = \log(x) + k \times \log(2)$
- 2. Use a polynomial approximation of f over I
- 3. Reconstruct the final result
 - If Correct Rounding is required, this may be done several times with increasing precision

Example: x^y in CORE-MATH

- A "library" of correctly-rounded functions¹
- Computed as $\exp(y \times \log(x))$
- Three phases to attain Correct Rounding
- Requires 6 polynomial approximations in total

Polynomial Approximation

Core Problem

In the end, it is the foundation of numerical evaluation, and needs to be:

- Fast, as it is in the critical path
- Accurate, to not have to redo computations

I.e. we want a polynomial with the smallest number of coefficients possible while maintaining a necessary accuracy.

Accuracy, i.e. relative error

What does "q bits of precision" mean?

For an approximation P of f over $I = [a, b] \subset \mathbb{R}$:

- Absolute error: $||P f||_{\infty} = \max_{x \in I} |P(x) f(x)|$
- Relative error: $\left\| \frac{P-f}{f} \right\|_{\infty} = \max_{x \in I} \left| \frac{P(x)-f(x)}{f(x)} \right|$

Thus, "q bits of precision" means a relative error smaller than 2^{-q}

Generalized polynomials

• Real polynomial: $Q = \sum a_i x^i$ with $a_i \in \mathbb{R}$, \Rightarrow used when minimizing absolute errors, but not enough for relative errors.

Generalized polynomials

- Real polynomial: $Q = \sum a_i x^i$ with $a_i \in \mathbb{R}$, \Rightarrow used when minimizing absolute errors, but not enough for relative errors.
- Generalized polynomial: $G = \sum a_i \varphi_i$, with $\varphi_i : \mathbb{R} \to \mathbb{R}$

Generalized polynomials

- Real polynomial: $Q = \sum a_i x^i$ with $a_i \in \mathbb{R}$, \Rightarrow used when minimizing absolute errors, but not enough for relative errors.
- Generalized polynomial: $G = \sum a_i \varphi_i$, with $\varphi_i : \mathbb{R} \to \mathbb{R}$
- Special case: $\sum a_i \frac{x^i}{f}$, \Rightarrow used for minimizing the relative error, with the target $x \mapsto 1$

Best Approximation: Minimax

For real polynomials, a minimax approximation p^* of f over $I \subset \mathbb{R}$ of degree $n \in \mathbb{N}$ is the polynomial $P \in \mathbb{R}_n[x]$ that minimizes the absolute error.

Under the Haar condition, there is one unique minimax approximation using generalized polynomials.

As a non-linear problem, we have an iterative algorithm to solve it (Remez).

Chebyshev polynomial of the first kind

- $T_n(\cos(\theta)) = \cos(n\theta)$
- Orthogonal family
- $T_n^{-1}(0) = \left\{ \cos\left(\frac{2k+1}{2n}\pi\right) : k \in \llbracket 0, n-1 \rrbracket \right\}$

Non-linear minimax, with linear approximation of the problem

Computing the minimax is a non-linear problem, that can be approximated by linear ones.

- Optimal: minimax polynomial
- Truncated Chebyshev Series or Interpolation polynomial at the Chebyshev nodes of first kind are "good approximations"

Let
$$L: \mathcal{F}(I,\mathbb{R}) \to \mathbb{R}_n[x]$$
, a linear operator: $\Lambda(L) = \sup_f \frac{\|Lf\|_{I,\infty}}{\|f\|_{I,\infty}}$

Let
$$L: \mathcal{F}(I,\mathbb{R}) \to \mathbb{R}_n[x]$$
, a linear operator: $\Lambda(L) = \sup_f \frac{\|Lf\|_{I,\infty}}{\|f\|_{L,\infty}}$

For
$$p^*$$
 the minimax, $\|f - Lf\|_{I,\infty} \le (1 + \Lambda(L)) \times \|f - p^*\|_{I,\infty}$

Let
$$L: \mathcal{F}(I,\mathbb{R}) \to \mathbb{R}_n[x]$$
, a linear operator: $\Lambda(L) = \sup_f \frac{\|Lf\|_{I,\infty}}{\|f\|_{I,\infty}}$

For
$$p^*$$
 the minimax, $\|f - Lf\|_{I,\infty} \le (1 + \Lambda(L)) \times \|f - p^*\|_{I,\infty}$

• Truncated Chebyshev series of degree *n* > 1 :

$$\frac{4}{\pi^2}\log(n+1) \le \Lambda\big(\mathrm{TCS}_n\big)$$

Let
$$L: \mathcal{F}(I,\mathbb{R}) \to \mathbb{R}_n[x]$$
, a linear operator: $\Lambda(L) = \sup_f \frac{\|Lf\|_{I,\infty}}{\|f\|_{I,\infty}}$

For
$$p^*$$
 the minimax, $\|f - Lf\|_{I,\infty} \le (1 + \Lambda(L)) \times \|f - p^*\|_{I,\infty}$

• Truncated Chebyshev series of degree n > 1:

$$\frac{4}{\pi^2}\log(n+1) \le \Lambda\big(\mathrm{TCS}_n\big) < \frac{4}{\pi^2}\log(n-1) + 3$$

Let
$$L: \mathcal{F}(I,\mathbb{R}) \to \mathbb{R}_n[x]$$
, a linear operator: $\Lambda(L) = \sup_f \frac{\|Lf\|_{I,\infty}}{\|f\|_{I,\infty}}$

For
$$p^*$$
 the minimax, $||f - Lf||_{I_{\infty}} \le (1 + \Lambda(L)) \times ||f - p^*||_{I_{\infty}}$

• Truncated Chebyshev series of degree n > 1:

$$\frac{4}{\pi^2}\log(n+1) \le \Lambda\big(\mathrm{TCS}_n\big) < \frac{4}{\pi^2}\log(n-1) + 3$$

• Interpolation of degree *n* > 1:

$$\frac{2}{\pi} \left(\log(n+1) + \gamma + \log\left(\frac{4}{\pi}\right) \right) \le \Lambda(I_n)$$

Let
$$L: \mathcal{F}(I,\mathbb{R}) \to \mathbb{R}_n[x]$$
, a linear operator: $\Lambda(L) = \sup_f \frac{\|Lf\|_{I,\infty}}{\|f\|_{I,\infty}}$

For
$$p^*$$
 the minimax, $||f - Lf||_{I_{\infty}} \le (1 + \Lambda(L)) \times ||f - p^*||_{I_{\infty}}$

• Truncated Chebyshev series of degree n > 1:

$$\frac{4}{\pi^2}\log(n+1) \le \Lambda\big(\mathrm{TCS}_n\big) < \frac{4}{\pi^2}\log(n-1) + 3$$

• Interpolation of degree *n* > 1:

$$\frac{2}{\pi} \left(\log(n+1) + \gamma + \log\left(\frac{4}{\pi}\right) \right) \le \Lambda(I_n) < \frac{2}{\pi} \log(n+1) + 1$$

L^2 projections

In the following, I = [-1, 1] (up to a linear change of variable)

The truncated Chebyshev series of degree n is the orthogonal projection of f onto the subspace $\mathrm{Span}(1,x,...,x^n)$ for the inner product $\langle f,g\rangle = \int\limits_{-1}^1 fg\frac{\mathrm{d}x}{\sqrt{1-x^2}}$

Therefore, we can approximate the non-linear minimization problem by a projection in some L^2 function space.

Machine-efficient polynomials

Recap on limited precision

Without a stroke of luck, real coefficients of polynomial approximations are not representable as floating-point numbers of fixed precision.

Practical example: arctan over [-1, 1]

Taken from "Scientific Computing on Itanium-Based Systems" 1

- Odd function \Rightarrow only consider odd powers of x
- Pin the first coefficient to 1 (save a multiplication)
- Use the symmetry to approximate over [0, 1] instead
- Minimizing the relative error

Naïve Rounding

• First idea: round each coefficient of the minimax (best approximation)

• Lose accuracy when increasing the degree (43 vs. 47)

Lack of a good structure for floating-point numbers

Floating-point numbers are of the form $2^{e_i}m_i$ with $m_i \in [2^{p-1}, 2^p - 1]$

- For the same exponent, the values are regularly placed on the reals
- But not when the exponent changes... \Rightarrow non linear set

Finding the best coefficients

For each coefficient, we need to find both e_i and m_i

- Finding both at the same time is tricky
- We first set e_i and then search for a corresponding m_i

Heuristically pinning the exponents

- Compute the projection with real coefficients $P = \sum a_i x^i$ and set $e_i = \lfloor p_i \log_2(|a_i|) \rfloor$
- Works when the precision is high enough (e.g. doubles)
- If it fails, adjust the exponents and start again

Closest Vector Problem

We look for an approximation of the form $P: x \mapsto \left(\sum_{i=0}^n m_i 2^{e_i} \cdot x^i\right), \quad |m_i| \in \mathbb{N} < 2^p - 1.$

When e_i is set heuristically, we search for a vector of the lattice generated by $\left(2^{e_i} \cdot x^i\right)_{i \in \llbracket 0,n \rrbracket}$ that is close to f.

For relative error, use the basis $\left(2^{e_i} \cdot \frac{x^i}{f}\right)_{i \in \llbracket 0, n \rrbracket}$ and the target $x \mapsto 1$

Euclidean Lattices

A Euclidean lattice is $L = \operatorname{Span}_{\mathbb{Z}}(b_0, ..., b_n)$, for $(b_i)_{i \in [0,n]}$ a family of linearly independent vectors.

 $E \supset L$ is a vector space.

Euclidean Lattices

A Euclidean lattice is $L = \operatorname{Span}_{\mathbb{Z}}(b_0, ..., b_n)$, for $(b_i)_{i \in [0,n]}$ a family of linearly independent vectors.

 $E \supset L$ is a vector space.

Euclidean Lattices

A Euclidean lattice is $L = \operatorname{Span}_{\mathbb{Z}}(b_0, ..., b_n)$, for $(b_i)_{i \in [0,n]}$ a family of linearly independent vectors.

 $E \supset L$ is a vector space.

The "Closest Vector Problem" is, for $x \in E$ and $\|\cdot\|$ a norm over E, to find $y \in L$ such that $\|x - y\|$ is small.

For a generic basis, solving CVP or a polynomial approximation of it is hard.

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, $b_i = b_i^*$ its orthogonalised vector.

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, $b_i = b_i^*$ its orthogonalised vector.

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, $b_i = b_i^*$ its orthogonalised vector.

LLL algorithm: transforms $(a_0,...,a_n)$ into $(b_0,...,b_n)$ such that $||b_1|| \le 2^{\frac{n}{2}} \min_{x \in L} (||x||)$.

In our case, the basis is not average.

Polynomial bases are special

Starting Lattice basis $\underbrace{x^3}_{a_0}$, $\underbrace{x^5}_{a_1}$, ..., $\underbrace{x^{47}}_{a_{22}}$, and a_0^{\star} , ..., a_{22}^{\star} the orthogonalized family, transformed into $(b_0,...,b_{22})$ and $(b_0^{\star},...,b_{22}^{\star})$

Orthogonality defect: measures how non-orthogonal the lattice basis is

When the basis is LLL-reduced, we have two algorithms at our disposal:

When the basis is LLL-reduced, we have two algorithms at our disposal:

 Rounding Off: Express the vector in the new basis, and set each coordinate to its closest integer

When the basis is LLL-reduced, we have two algorithms at our disposal:

 Rounding Off: Express the vector in the new basis, and set each coordinate to its closest integer

 Nearest Plane: Iteratively project each coordinate, taking into account previous rounding errors

• In our case, both perform the same (reduced basis is near orthogonal)

Implementations

- State of the art: fpminimax in the Sollya¹ toolbox
- Newly revisited L² prototype

Implementations

- State of the art: fpminimax in the Sollya¹ toolbox
- Newly revisited L^2 prototype

With the same global approach:

- Find a polynomial with real coefficients approximating f (minimax or projection)
- Explore the surroundings to find one with coefficients of the desired size

Fpminimax: Discretization

• Take d+1 points $x_0,...,x_d$ in I such that $p^*(x_i)$ (the minimax approximation) is as close as possible to $f(x_i)$

Fpminimax: Discretization

- Take d+1 points $x_0, ..., x_d$ in I such that $p^*(x_i)$ (the minimax approximation) is as close as possible to $f(x_i)$
- We want to minimize:

$$\left| \sum_{i=0}^{d} m_i \begin{pmatrix} 2^{e_i} x_0^i \\ \dots \\ 2^{e_i} x_d^i \end{pmatrix} - \begin{pmatrix} f(x_0) \\ \dots \\ f(x_d) \end{pmatrix} \right|_2$$

which is an instance of the Closest Vector Problem.

L^2 : A functional view

• Using a function space as the overall vector space: $\mathscr{F}(I,\mathbb{R})$ (and $E = \operatorname{Span}_{\mathbb{R}}(x^0,...,x^n)$ as a subspace)

L^2 : A functional view

- Using a function space as the overall vector space: $\mathcal{F}(I, \mathbb{R})$ (and $E = \operatorname{Span}_{\mathbb{R}}(x^0, ..., x^n)$ as a subspace)
- Lattice basis are scaled monomials: $x \mapsto 2^{e_i}x^i$

L^2 : A functional view

- Using a function space as the overall vector space: $\mathcal{F}(I, \mathbb{R})$ (and $E = \operatorname{Span}_{\mathbb{R}}(x^0, ..., x^n)$ as a subspace)
- Lattice basis are scaled monomials: $x \mapsto 2^{e_i}x^i$
- Euclidean norm as an integral computation

Integral inner product

- Weight function: $w: x \mapsto \sqrt{1-x^2}^{-1}$
- Inner product: $\int_{-1}^{1} f(x)g(x)w(x) dx$
- ⇒ The projection gives the Chebyshev truncated series

Thus, we use the orthogonal projection (an element of finite dimension) as the LLL target:

$$\|f - g\|_{2} = \|p_{E}(f) - g\|_{2} + \|f - p_{E}(f)\|_{2}$$

Computing integrals

- Using ARB¹ for the intermediate computations
- High precision (1024-2048 bits) is required so the result is not just an error ball

$$w: x \mapsto \frac{1}{\sqrt{1-x^2}}$$
 is ill-conditioned at the bounds of I

Computing integrals

- Using ARB¹ for the intermediate computations
- High precision (1024-2048 bits) is required so the result is not just an error ball

$$w: x \mapsto \frac{1}{\sqrt{1-x^2}}$$
 is ill-conditioned at the bounds of I

• Change of variable: w disappears

Set
$$x = \cos(\theta)$$
, $\langle f, g \rangle = \int_{-1}^{1} (f \times g)(x) w(x) dx = \int_{0}^{\pi} (f \times g)(\cos(\theta)) d\theta$

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{n} h_{k,n} T_n$

¹Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{\infty} h_{k,n} T_n$

•
$$h_{0,n} = \frac{2}{n} \times \sum_{k=0}^{n} (f \times g)(v_k)$$
 where $v_k = \cos(\frac{k\pi}{n})$, the roots of U_{n+1}

¹Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{\infty} h_{k,n} T_n$

•
$$h_{0,n} = \frac{2}{n} \times \sum_{k=0}^{n} (f \times g)(v_k)$$
 where $v_k = \cos(\frac{k\pi}{n})$, the roots of U_{n+1}

• For
$$k \neq 0$$
,
$$\int_{0}^{\pi} T_{k}(\cos(\theta)) d\theta = \int_{0}^{\pi} \cos(k\theta) d\theta = 0$$

¹Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule

- View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{n} h_{k,n} T_n$
- $h_{0,n} = \frac{2}{n} \times \sum_{k=0}^{n} (f \times g)(v_k)$ where $v_k = \cos(\frac{k\pi}{n})$, the roots of U_{n+1}
- For $k \neq 0$, $\int_{0}^{\pi} T_{k}(\cos(\theta)) d\theta = \int_{0}^{\pi} \cos(k\theta) d\theta = 0$

Hence,

$$\langle f, g \rangle = \frac{\pi}{n} \lim_{n \to \infty} \sum_{k=0}^{n} (f \times g) \left(\cos \left(\frac{k\pi}{n} \right) \right)$$

which converges exponentially fast¹.

¹Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule

Fpminimax: Discretization

- Take d+1 points $x_0,...,x_d$ in I such that $p^*(x_i)$ (the minimax approximation) is as close as possible to $f(x_i)$
- We want to minimize:

$$\left| \sum_{i=0}^{d} m_i \begin{pmatrix} 2^{e_i} x_0^i \\ \dots \\ 2^{e_i} x_d^i \end{pmatrix} - \begin{pmatrix} f(x_0) \\ \dots \\ f(x_d) \end{pmatrix} \right|_2$$

Fpminimax: a special case of L^2 ?

• Minimize
$$\sum_{j=0}^{d} \left(\sum_{i=0}^{d} m_i \left(2^{e_i} x_j^i \right) - f(x_j) \right)^2$$

- When the (x_i) are the Chebyshev nodes, it is the same computation as our integral
- The sum can be seen as an approximation of

$$\underbrace{\int_{-1}^{1} \left(\sum_{i=0}^{d} m_i \left(2^{e_i} x^i \right) - f(x) \right)^2 dx}_{I,2} \sim \underbrace{\frac{1}{d+1} \sum_{j=0}^{d} \left(\sum_{i=0}^{d} m_i \left(2^{e_i} x_j^i \right) - f(x_j) \right)^2}_{\text{fpminimax}}$$

Closest Vector Problem: Gram form

Vectors are functions ⇒ need of a basis to express them

Closest Vector Problem: Gram form

- Vectors are functions ⇒ need of a basis to express them
- Use the same basis!

Closest Vector Problem: Gram form

- Vectors are functions ⇒ need of a basis to express them
- Use the same basis!
- Gram matrix: $G = \left(\langle b_i, b_j \rangle\right)_{i,j \in \llbracket 0,n \rrbracket}$ Projection: $V = \left(\langle f, b_i \rangle\right)_{i \in \llbracket 0,n \rrbracket}$

 \Rightarrow we have coordinates scaled by the norm of the b_i

Nearest Plane in Gram form

Input:

- G, the Gram matrix of the basis $(b_i)_{i \in \llbracket 0, n \rrbracket}$
- V, the projection of f onto the space generated by $(b_i)_{i \in \llbracket 0, n \rrbracket}$, in the form $(f|b_i)_{i \in \llbracket 0, n \rrbracket}$

Output:

• $X \in \mathbb{N}^{n+1}$ the coordinates of an element of the lattice generated by $(b_i)_{i \in \llbracket 0,n \rrbracket}$ close to f

begin

```
D, B = \operatorname{Gram\_Schmidt}(G), i.e. \ G = B^t DB
W \leftarrow D^{-1} (B^t)^{-1} V
for j from n to 0
X[j] \leftarrow [W[j]]
for i from 0 to n
W[i] \leftarrow W[i] - X[j]B[i,j]
end
end
return X
```

Table

Let $f = \arctan(x)$ over [-1, 1], \mathbb{F} the set of floating point numbers, consider the following approximations of f:

- $P^*(x) \in \mathbb{R}_d[x] = \sum_{i=0}^d a_i x^i$ the relative minimax polynomial of f
- $N(x) \in \mathbb{F}_d[x] = \sum_{i=0}^{d} \hat{a}_i x^i$, the naïve rounding of P
- $F(x) \in \mathbb{F}_d[x]$, the polynomial returned by fpminimax
- $P_E(f) \in \mathbb{R}_d[x]$, the orthogonal projection of f onto the polynomial space
- $B(x) \in \mathbb{F}_d[x]$, the polynomial returned by the Babai method, targetting $P_E(f)$
- $R(x) \in \mathbb{F}_d[x]$, the polynomial returned by the Babai method, targetting $P^*(x)$

Table

Maximal relative errors

Computing for the different polynomials:

$$\left\|1-\frac{Q}{f}\right\|_{\infty}$$

Degree	$P^{\star}(x)$	N(x)	F(x)	$P_E(f)$	B(x)	R(x)
7	2.5870e-4	2.9446e-4	2.5870e-4	2.9446e-4	2.9446e-4	2.5870e-4
25	9.9686e-12	1.2099e-11	9.9686e-12	1.2099e-11	1.2099e-11	9.9686e-12
37	1.7341e-16	2.1254e-16	1.7341e-16	2.1231e-16	2.1236e-16	1.7347e-16
47	2.0381e-20	9.2094e-18	2.6477e-20	2.4891e-20	2.5526e-20	2.6258e-20

Maximal relative errors betweens approximating polynomials and arctan over [-1, 1]

Table

L^2 error

The following table show the euclidean error (in l2 norm) obtained for each polynomial

Degree	$P^{\star}(x)$	N(x)	F(x)	$P_E(f)$	B(x)
37	2.067e-16	2.073e-16	2.068e-16	2.056e-16	2.056e-16
47	2.444e-20	1.537e-17	2.503e-20	2.426e-20	2.498e-20

 L_2 errors betweens approximating polynomials and arctan over [0,1]

Funny behaviours

Take
$$f = \exp$$
, $I = \left[-\frac{\ln(2)}{8}, \frac{\ln(2)}{8} \right]$, $d = 11$ and a target polynomial of the form:

$$1 + x + (1 + a_2)\frac{x^2}{2} + a_3x^3 + \dots + a_{11}x^{11}$$

where a_3 has 106 bits of precision and a_i , $i \neq 3$ has a precision of 53 bits.

The relative error of the orthogonal projection is 2.24e-25 and the Babai method gives a constrained polynomial with a relative error of 2.14e-25.

Funny behaviours

Conclusion

- More general view of the minimization problem
- Another tool, complementary to fpminimax, for polynomial approximation
- Trivial extension for multivariate functions (integrate over a *n*-dimensional cube)
- But it does not take into account the evaluation error due to rounding
 c.f. joint work with D. Arzelier, F. Bréhard and M. Joldes, to be published in TOMS