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What is it about

e Polynomial approximation: Given f: I <R — R, find P € R,[X] “close” to f
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What is it about

e Polynomial approximation: Given f: I <R — R, find P € R,[X] “close” to f

e Size-constrained coefficients: That can be represented on some finite amount of
memory (e.g. 64 bits)
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But why ?



Numerical evaluation of functions

We want to:

e evaluate numerically various mathematical functions
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Numerical evaluation of functions

We want to:

e evaluate numerically various mathematical functions

e use computers to do the work
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Limited precision of machine numbers

exponent fraction

sign (11 bit) (52 bit)
|| Il |
O O o
63 52 0

x=(-1)Sx2¢x 1.f

log(2) ~ 0.693147180559945 o(log(2)) = 0x1.62e42fefa39efp-1

Where o(x) is the closest floating-point number to x
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Some basic arithmetic operations

The operations at our disposal are: +, x, -, :
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Some basic arithmetic operations

The operations at our disposal are: +, x, -, :

We need to use approximations to compute numerical values of functions.

In most cases, we work with polynomial approximations:

exp(z)za0+z><(a1+2><(612+Z"(613+Z"a4>>>
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Mathematical Libraries

e All programs use libraries: sets of (mostly) standard functions to avoid reinventing
the wheel (and making mistakes).
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Mathematical Libraries

All programs use libraries: sets of (mostly) standard functions to avoid reinventing
the wheel (and making mistakes).

To compute mathematical functions, there are “libm”s implementing exp, log, sin, ...

List of mathematical functions defined in standards as IEEE754, ISO/IEC 9899

Several of them coexist: glibc, LLVM math library, CORE-MATH, ...
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Libm constraints

e Speed is a big requirement, those functions will be used more than 100M times

e Accuracy varies and is not always defined
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Correct Rounding

The evaluation f of a function f is correctly rounded if f(x) is the closest floating-
point value to f(x) for all x.

It is necessary in multiple domains :
e Distributed computations, HPC
e Any application requiring reproducible results

But, it is a much harder property to guarantee than, e.qg., “52 bits of precision” out of
the 53 bits of doubles
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Building a libm function

Three steps are usually observed:

1. Range reduction: go from R to I a small segment for the inputs
e Using various equalities: e.g. log(2*x) = log(x) + k x log(2)

2. Use a polynomial approximation of f over I

3. Reconstruct the final result
e If Correct Rounding is required, this may be done several times with increasing
precision
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Example: x” in CORE-MATH

A “library” of correctly-rounded functions'

Computed as exp(y x log(x))

Three phases to attain Correct Rounding

Requires 6 polynomial approximations in total

https://core-math.gitlabpages.inria.fr/
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Polynomial Approximation




Core Problem

In the end, it is the foundation of numerical evaluation, and needs to be:
e Fast, as it is in the critical path
e Accurate, to not have to redo computations

I.e. we want a polynomial with the smallest number of coefficients possible while
maintaining a necessary accuracy.
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Accuracy, i.e. relative error

What does “q bits of precision” mean ?

For an approximation P of f over I = [a, b] c R:
o Absolute error: |P - f|_ = max ‘P(x) — f(x)‘
X

P(x)-f(x)

Relative error:
° 0

—f
— = Imax
f |.Oo x€l
Thus, “q bits of precision” means a relative error smaller than 274
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Generalized polynomials

e Real polynomial: Q = Y a;x* with a; € R, = used when minimizing absolute errors,
but not enough for relative errors.
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Generalized polynomials

e Real polynomial: Q = Y a;x* with a; € R, = used when minimizing absolute errors,
but not enough for relative errors.

e Generalized polynomial: G = )] a;¢;, with ¢; : R — R

e Special case: ), al-x? = used for minimizing the relative error, with the target x — 1
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Best Approximation: Minimax

For real polynomials, a minimax approximation p* of f over I < R of degree n € N is
the polynomial P € R,[x] that minimizes the absolute error.

Under the Haar condition, there is one unique minimax approximation using
generalized polynomials.

As a non-linear problem, we have an iterative algorithm to solve it (Remez).
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Chebyshev polynomial of the first kind

e T.(cos(6)) = cos(nb)

e Orthogonal family

o T;%(0) =

COS(
2n

2k+1

= To(x) T1(x) To(x) == T3(x) == Ta(x)
ggr —— T
05|
0.0f
—0.5)
_1ol
4o s o0 o5 10

ﬂ):ke[[O,n—l]]
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Non-linear minimax, with linear approximation of the problem

Computing the minimax is a non-linear problem, that can be approximated by linear
ones.

e Optimal: minimax polynomial

e Truncated Chebyshev Series or Interpolation polynomial at the Chebyshev nodes of
first kind are “good approximations”
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Lebesgue constant

Let L: #(I,R) — R,[x], a linear operator: A(L) = sup HIILmeLOO
1,00
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Lebesgue constant

. L =2
Let L: #(I,R) — R,[x], a linear operator: A(L) = sup ”n;inl’
1,00

For p* the minimax, | f - Lf|; , < (1 + A(L) < [f - p*|;

e Truncated Chebyshev series of degree n > 1:
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Lebesgue constant

. L =2
Let L: #(I,R) — R,[x], a linear operator: A(L) = sup ”n;inl’
1,00

For p* the minimax, | f - Lf|; , < (1 + A(L) < [f - p*|;

e Truncated Chebyshev series of degree n > 1:

4 4
) log(n+1) < A(TCSn) < log(n-1)+3

e Interpolation of degree n > 1:

2 <
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Lebesgue constant

. L =2
Let L: #(I,R) — R,[x], a linear operator: A(L) = sup ”n;inl’
1,00

For p* the minimax, | f - Lf|; , < (1 + A(L) < [f - p*|;

e Truncated Chebyshev series of degree n > 1:

4 4
) log(n+1) < A(TCSn) < log(n-1)+3

e Interpolation of degree n > 1:

2 < 2
—(log(n +1)+y+ log<—)) < A(I,) < —log(n+1) +1
T T T
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L? projections

In the following, I = [-1, 1] (up to a linear change of variable)

The truncated Chebyshev series of degree n is the ortholgonal projection of f onto the

" . _ dx
subspace Span(l, x, ..., x") for the inner product (f, g) = -J1 fe =

Therefore, we can approximate the non-linear minimization problem by a projection in
some L? function space.
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Machine-efficient polynomials




Recap on limited precision

exponent fraction

sign (11 bit) (52 bit)
| Il |
O o) o
63 52 0

Without a stroke of luck, real coefficients of polynomial approximations are not
representable as floating-point numbers of fixed precision.
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Practical example: arctan over [-1,1]

Taken from “Scientific Computing on Itanium-Based Systems”’

Odd function = only consider odd powers of x

Pin the first coefficient to 1 (save a multiplication)

Use the symmetry to approximate over [0, 1] instead

Minimizing the relative error

M. Cornea and J. Harrison and P. T. P. Tang

21/ 48



Naive Rounding

e First idea: round each coefficient of the minimax (best approximation)

R AWAWAWAWAWININ]
NNAVAYRVAVAVATNILL

e Lose accuracy when increasing the degree (43 vs. 47)
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Lack of a good structure for floating-point numbers

Floating-point numbers are of the form 2% m; with m; € [2P~1, 2P — 1]

e For the same exponent, the values are regularly placed on the reals

e But not when the exponent changes... = non linear set
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Finding the best coefficients

For each coefficient, we need to find both e; and m;

e Finding both at the same time is tricky

o We first set e; and then search for a corresponding m;
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Heuristically pinning the exponents

« Compute the projection with real coefficients P = Y a;x’ and set ¢; = |p; - logy (|ai]) |
e Works when the precision is high enough (e.g. doubles)

o If it fails, adjust the exponents and start again
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Closest Vector Problem

n
We look for an approximation of the form P: x — (Z m;2°i - x’), Im;| € N < 2P - 1.
i=0

When e¢; is set heuristically, we search for a vector of the lattice generated by
€ . I 1
(26 - x >i€[[0,n]] that is close to f.

i

For relative error, use the basis (zei : x—) and the target x — 1
i€[0,n]
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Euclidean Lattices

A Euclidean lattice is L = Spang(by, ..., b, ), for (b;)
independant vectors.

i€[0.1] a family of linearly

E - L is a vector space.
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Euclidean Lattices

A Euclidean lattice is L = Spang(by, ..., b, ), for (b;)
independant vectors.

i€[0.1] a family of linearly

E - L is a vector space.

(] o o o o

The “Closest Vector Problem” is, for x € E and | - | a norm over E, to find y € L such that
|x - y| 1s small.
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The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.
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The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, b; = b} its orthogonalised vector.

n

LLL algorithm: transforms (ao, an) into (bo, bn) such that |b4| < 22 mei?(||x||).
X

In our case, the basis is not average.
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Polynomial bases are special

Starting Lattice basis x3, x°,... x*” , and 4§, ...a}, the orthogonalized family,
(71 a as
transformed into (by, ..., bzzj and zb(*,,..., b3,)
10__ | ;’ ] Orthogonality defect: 11.41 J
10-43 1 10-36 1
o Orthogonality defect: 6.321e+279 .

Orthogonality defect: measures how non-orthogonal the lattice basis is
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Solving the Approximate CVP: Babai algorithms

When the basis is LLL-reduced, we have two algorithms at our disposal:
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Solving the Approximate CVP: Babai algorithms

When the basis is LLL-reduced, we have two algorithms at our disposal:

e Rounding Off : Express the vector in the new basis, and set each coordinate to its
closest integer

e Nearest Plane : Iteratively project each coordinate, taking into account previous
rounding errors
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Solving the Approximate CVP: Babai algorithms

3
Ji=35 1.15
J : . _
/bS ,"bS ///T_/ﬁ/’_}ibl//
|

//,/*f?)/

e In our case, both perform the same (reduced basis is near orthogonal)
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A visual example

4N
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A visual example
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A visual example

Rounding Off
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A visual example

Nearest Plane

Rounding Off
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Implementations

e State of the art: fpminimax in the Sollya' toolbox

e Newly revisited L? prototype

https://sollya.org
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Implementations

e State of the art: fpminimax in the Sollya' toolbox

e Newly revisited L2 prototype

With the same global approach:

e Find a polynomial with real coefficients approximating f (minimax or projection)

e Explore the surroundings to find one with coefficients of the desired size

https://sollya.org
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Fpminimax: Discretization

e Take d + 1 points xy, ..., xz in I such that p* (xi) (the minimax approximation) is as
close as possible to f(x;)
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Fpminimax: Discretization

e Take d + 1 points xy, ..., xz in I such that p* (xi) (the minimax approximation) is as
close as possible to f(x;)

e We want to minimize :

a  [29x)) (f(x0)
Yom| |-

i=0 Zeixcil \f<xd>)

which is an instance of the Closest Vector Problem.
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L?: A functional view

e Using a function space as the overall vector space: #(I,R)
(and E = Spang (x?,...,x") as a subspace)
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L?: A functional view

e Using a function space as the overall vector space: #(I,R)
(and E = Spang (x?,...,x") as a subspace)

e Lattice basis are scaled monomials: x — 26 x*

e Euclidean norm as an integral computation
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Integral inner product

-1
e Weight function: w: x — /1 - x2
1
o Inner product: | f(x)g(x)w(x) dx
“1

= The projection gives the Chebyshev truncated series

Thus, we use the orthogonal projection (an element of finite dimension) as the LLL
target:

1f -l = |pe() - o], + | £ - pe ()],
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Computing integrals

e Using ARB' for the intermediate computations
e High precision (1024-2048 bits) is required so the result is not just an error ball

1

1-x

is ill-conditioned at the bounds of I

wiX >

https://flintlib.org/doc/index_arb.html
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Computing integrals

e Using ARB' for the intermediate computations
e High precision (1024-2048 bits) is required so the result is not just an error ball

1

1-x

WX — is ill-conditioned at the bounds of I

2

e Change of variable: w disappears

1

Set x = cos(0), <(f,g) = _fl (f x g)(x)w(x)dx = (f) (f X g)(cos(@))d@

https://flintlib.org/doc/index_arb.html
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Chebyshev strikes again

n
e View it as a truncated Chebyshev series: f x g = lim »; h,T,
k=0

Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule
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n
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n
o hop= % x 3" (f x g)(vi) where v = cos(%ﬂ), the roots of U, 1
k=0
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Chebyshev strikes again

n
e View it as a truncated Chebyshev series: f x g = lim »; h,T,
k=0

S|

n
x 3" (f x g)(vi) where v = cos(%ﬂ), the roots of U, 4
k=0

T JT
o Fork #0, | Ti(cos(9) dd = [ cos(kf) dd = 0
0 0

i hO,n =

Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule
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Chebyshev strikes again

n
e View it as a truncated Chebyshev series: f x g = lim »; h,T,
k=0

n
o hon==xY2"(fxg)(v) where v = cos(%ﬂ), the roots of U, 1
k=0

S|

T JT
o Fork #0, | Ti(cos(9) dd = [ cos(kf) dd = 0
0 0

Hence,
T n ki
fog=—lim Y (fxg) (cos(—))
n n—oo (=4 n

which converges exponentially fast’.

Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule
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Fpminimax: Discretization

e Take d + 1 points xo, ..., xg in I such that p*(x;) (the minimax approximation) is as
close as possible to f(x;)

e We want to minimize:
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Fpminimax: a special case of 1.2 ?

0 0.0 d d €; -1 2
e Minimize JZ:() <Z mi(2 lxj-) - f(x])>

e When the ( ) are the Chebyshev nodes, it is the same computation as our integral

e The sum can be seen as an approximation of

1 2 1
J(Z m, f(x)) dx ~ T

. J

Z (Z mi( 2% —f(xj)>2

J

12 fpminimax
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Closest Vector Problem: Gram form

e Vectors are functions = need of a basis to express them
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Closest Vector Problem: Gram form

Vectors are functions = need of a basis to express them

Use the same basis!

Gram matrix: G = ((bi, b]->)

i,j€[0,n]
Projection: V = ({f, b))

i€fo,n]

= we have coordinates scaled by the norm of the b,
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Nearest Plane in Gram form

Input:

e G, the Gram matrix of the basis (bi)ie[[o,n]]

e V, the projection of f onto the space generated by (bi)ie[[o,n]]’ in the form (f|bi>ie[[o,n]]
Output:

o X € N"1 the coordinates of an element of the lattice generated by (b;) close to f

i€[o,n]
begin
D, B = Gram_Schmidt(G), i.e. G = B'DB
W — D 1(B) vV
for jfrom nto 0
X[jl < Wil
forifromo0ton
Wli] « Wil - X[j]B[i, j]
end
end
return X

end
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Let f = arctan(x) over [-1, 1], F the set of floating point numbers, consider the
following approximations of f :

e P*(x) € Ry[x 20 a;x' the relative minimax polynomial of f

N(x) € Fy[x Zo a;x', the naive rounding of P

F(x) € F4[x], the polynomial returned by fpminimax

o Pr(f) € Ry[x], the orthogonal projection of f onto the polynomial space

B(x) € F4[x], the polynomial returned by the Babai method, targetting Px ( f)

R(x) € F [x], the polynomial returned by the Babai method, targetting P*(x)
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Maximal relative errors

Computing for the different polynomials:

-7

f

(6}

Degree|  P*(x) N(x) F(x) Pr(f) B(x) R(x)
7 | 2.5870e-4 | 2.9446e-4 | 2.5870e-4 | 2.9446e-4 | 2.9446e-4 | 2.5870e-4
25 |9.9686e-12| 1.209%e-11 |9.9686e-12| 1.2099e-11 | 1.2099e-11 | 9.9686e-12
37 | 17341e-16 | 2.1254e-16 | 1.7341e-16 | 2.1231e-16 | 2.1236e-16 | 1.7347e-16
47 |2.0381e-20|9.2094e-18(2.6477e-20 |2.4891e-20 | 2.5526e-20 | 2.6258e-20

Maximal relative errors betweens approximating polynomials and arctan over [-1,1]
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L2 error

The following table show the euclidean error (in 12 norm) obtained for each polynomial

Degree| P*(x) N(x) F(x) Pr(f) B(x)
37 2.067e-16 [2.073e-16 | 2.068e-16 | 2.056e-16 | 2.056e-16
47 |2.444e-20| 1.537e-17 |2.503e-20|2.426e-20|2.498e-20

L, errors betweens approximating polynomials and arctan over [0, 1]
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Funny behaviours

In(2) 1n(2)
8 ° 8

Take f =exp, I = [— ], d = 11 and a target polynomial of the form:

x2

1+x+(1+ az)7 +agx> + ...+ a;yxt]

where a3 has 106 bits of precision and q;, i # 3 has a precision of 53 bits.

The relative error of the orthogonal projection is 2.24e-25 and the Babai method gives
a constrained polynomial with a relative error of 2.14e-25.
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Funny behaviours

le—25

2.0 7 —method: babai
: method: exact

1.5
1.0 -

0.5

0.0
-0.5 1

-1.0

| |

T T T T T T T T T T T
—0.05 0.00 0.05
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Conclusion

More general view of the minimization problem

Another tool, complementary to fpminimax, for polynomial approximation

Trivial extension for multivariate functions (integrate over a n-dimensional cube)

But it does not take into account the evaluation error due to rounding
c.f. joint work with D. Arzelier, F. Bréhard and M. Joldes, to be published in TOMS
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