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One specific instance of a class of algorithms
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Focus on several problems:

= Closure properties (LCLM, Symmetric
product) [Stanley 1980] [van der Hoeven 2016]
[Bostan, Chyzak, Li, Salvy 2012]

= Computation of a differential equation
satisfied by an algebraic function
[Bostan, Chyzak, Lecerf, Salvy, Schost 2007]

= Creative telescoping based on Hermite
reduction [Bostan, Chen, Chyzak, Li 2010]
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Theorem (G. 2025)

Let T = XM™1Y and § = degdet M. (+ technical assumptions in ISSAC paper)
Then, there exists a solution with degn; € O(nJ).

Unified approach for bounds:

= Exhibit a small realisation T = XM~1Y (i.e. with )

= Retrieve or improve the best known bound
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Bounds in specific problems

Our unified approach catches the bounds!
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Bounds in specific problems

Our unified approach catches the bounds!

Previous Bound Our Bound Matrix of the Problem
ds®r + o(ds?r) .
LCLM & ds?r + o(ds®r) T = Diag(Cy, &)
[BCLS 12]
O(dr?) )
SymProd ® O(dr>s—1) T=Gl,+1,2G

[Kauers 14]

4d2dy + o(d2dy)
[BCLSS 07]
2d2d, + o(d2dy)

[BCCL 10]

AlgeqtoDiffeq 2d2d, + o(d2dy) | T:amod P+~ —d,(a)P/P, mod P

Hermite 2d2d, + o(dd.) T:amod Q — —herm(Qxa/Q?)
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Warm-up without differentiation: the classical Krylov case

K:[Tsla T3 ... T5a T=XM"1Y A=detM withs >0

Factorisation: K=T%.|g TS s13 ... Tssig| =T.K

Cauchy-Binet: Minor of K = Z (Minor of T*! - Minor of K)

Induction

- Z NSt ' ASSt . g

= AS,

No such matrix factorisation in the differential case

Remark: Gives tight estimates on the size of the minimal polynomial of T
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K:{Gslul 0%2uy, --- Gsfur} §=0+T T=XM1Y A=detM u;ck[x]"

Use a Left Matrix Fraction Description 7 = D'/ [Kailath 80] with det D = A
K=[uf . ] +D07 K
with K1 € k(x)"™" whose column j is

Z 0 (Vo) and 61 = O + T with Ty = (N — D')D ™!

By multilinearity of det and induction: Minor of K1 = 15—

— Minorof K = — (by Cauchy Binet + multilinearity)
A
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Right Description K = ND~' with N, D polynomial matrices and degdet D small
= Apply the same approach to more problems
= Substitution of algebraic functions into D-finite ones
= Closure properties for recurrences (sums, products,...)
= Creative telescoping based on Griffiths-Dwork reduction

= Non minimal operators (ex: CLM instead of LCLM)
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Thank you for your attention!



