A unified approach for degree bound estimates of linear differential operators

Séminaire Pascaline

Louis Gaillard June 19th 2025

 $f(x) \in k[[x]]$ solution of

$$a_r(x)f^{(r)}(x) + \cdots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_i(x) \in k[x]$$

r =order of L

 $f(x) \in k[[x]]$ solution of

$$d = \max(\deg a_i) = \deg \operatorname{ree} \operatorname{of} L$$

$$a_r(x)f^{(r)}(x) + \cdots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_i(x) \in k[x]$$

L(f) = 0 with $L = a_r \partial^r + \cdots + a_1 \partial + a_0$

r = order of L

 $f(x) \in k[[x]]$ solution of

$$d = \max(\deg a_i) = \deg \operatorname{ree} \operatorname{of} L$$

$$a_r(x)f^{(r)}(x) + \cdots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_i(x) \in k[x]$$

$$L(f) = 0$$
 with $L = a_r \partial^r + \cdots + a_1 \partial + a_0$

Examples: $\exp(x)$, $\cos(x)$, $\arctan(x)$, $\operatorname{erf}(x)$, ...

r = order of L

 $f(x) \in k[[x]]$ solution of

$$d = \max(\deg a_i) = \deg \operatorname{ree} \operatorname{of} L$$

$$a_r(x)f^{(r)}(x) + \cdots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_i(x) \in k[x]$$

$$L(f) = 0$$
 with $L = a_r \partial^r + \cdots + a_1 \partial + a_0$

Examples: $\exp(x), \cos(x), \arctan(x), \operatorname{erf}(x), \ldots$

LDE is a good data structure for its solutions

Study properties

Prove identities

 $f(x) \in k[[x]]$ solution of

r =order of L

$$d = \max(\deg a_i) = \deg \operatorname{ree} \operatorname{of} L$$

$$a_r(x)f^{(r)}(x) + \cdots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_i(x) \in k[x]$$

$$L(f) = 0$$
 with $L = a_r \partial^r + \cdots + a_1 \partial + a_0$

Examples: $\exp(x), \cos(x), \arctan(x), \operatorname{erf}(x), \ldots$

LDE is a good data structure for its solutions

Study properties

Prove identities

Need efficient algorithms for computing LDEs

 $f(x) \in k[[x]]$ solution of

r = order of L

$$d = \max(\deg a_i) = \deg ree of L$$

$$a_r(x)f^{(r)}(x) + \cdots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_i(x) \in k[x]$$

$$L(f) = 0$$
 with $L = a_r \partial^r + \cdots + a_1 \partial + a_0$

Examples: $\exp(x), \cos(x), \arctan(x), \operatorname{erf}(x), \ldots$

LDE is a good data structure for its solutions

Study properties

Prove identities

Need efficient algorithms for computing LDEs

Ex (LCLM): Given L_1, L_2 s.t. $L_1(f) = 0, L_2(g) = 0 \rightarrow \text{Find } L$ s.t. L(f+g) = 0.

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial -3$$
 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial -2$

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

 $\alpha = \alpha_1 + \alpha_2$

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

$$\begin{array}{ccc} \alpha = \alpha_1 + \alpha_2 & \alpha' = \alpha'_1 + \alpha'_2 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \end{array} \right] \cdot \left[\begin{array}{c} \eta_0 \\ \eta_1 \\ \vdots \\ 0 \end{array} \right] \stackrel{?}{=} 0$$

$$L_1 = (x^2 + 1) \partial^2 - (x + 2) \partial - 3$$
 and $L_2 = x^2 \partial^2 - (x + 3) \partial - 2$

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

$$\begin{array}{c} \alpha = \alpha_1 + \alpha_2 \quad \alpha' = \alpha'_1 + \alpha'_2 \\ \alpha'' = \frac{3}{x^2 + 1} \alpha_1 + \frac{x + 2}{x^2 + 1} \alpha'_1 + \frac{2}{x^2} \alpha_2 + \frac{x + 3}{x^2} \alpha'_2 \end{array} \begin{bmatrix} 1 & 0 & \frac{3}{x^2 + 1} \\ 0 & 1 & \frac{x + 2}{x^2 + 1} \\ 1 & 0 & \frac{2}{x^2} \\ 0 & 1 & \frac{x + 3}{x^2} \end{bmatrix} \cdot \begin{bmatrix} \eta_0 \\ \eta_1 \\ \vdots \\ 0 \end{bmatrix} \stackrel{?}{=} 0$$

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

$$\begin{array}{c} \alpha = \alpha_1 + \alpha_2 \quad \alpha' = \alpha'_1 + \alpha'_2 \\ \alpha'' = \frac{3}{x^2 + 1} \alpha_1 + \frac{x + 2}{x^2 + 1} \alpha'_1 + \frac{2}{x^2} \alpha_2 + \frac{x + 3}{x^2} \alpha'_2 \\ \alpha^{(3)} = \cdots \quad \alpha^{(4)} = \cdots \end{array} \qquad \left[\begin{array}{cccc} 1 & 0 & \frac{3}{x^2 + 1} \\ 0 & 1 & \frac{x + 2}{x^2 + 1} \\ 1 & 0 & \frac{2}{x^2} \\ 0 & 1 & \frac{x + 3}{x^2} \end{array} \right] \cdot \left[\begin{array}{c} \eta_0 \\ \eta_1 \\ \vdots \\ \eta_4 \end{array} \right] = 0$$

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

$$\begin{array}{c} \alpha = \alpha_1 + \alpha_2 \quad \alpha' = \alpha'_1 + \alpha'_2 \\ \alpha'' = \frac{3}{x^2 + 1} \alpha_1 + \frac{x + 2}{x^2 + 1} \alpha'_1 + \frac{2}{x^2} \alpha_2 + \frac{x + 3}{x^2} \alpha'_2 \\ \alpha^{(3)} = \cdots \quad \alpha^{(4)} = \cdots \end{array} \qquad \left[\begin{array}{cccc} 1 & 0 & \frac{3}{x^2 + 1} \\ 0 & 1 & \frac{x + 2}{x^2 + 1} \\ 1 & 0 & \frac{2}{x^2} \\ 0 & 1 & \frac{x + 3}{x^2} \end{array} \right] \cdot \left[\begin{array}{c} \eta_0 \\ \eta_1 \\ \vdots \\ \eta_4 \end{array} \right] = 0$$

Solve the linear system and get $L = \eta_4 \cdot \partial^4 + \eta_3 \cdot \partial^3 + \eta_2 \cdot \partial^2 + \eta_1 \cdot \partial + \eta_0 \in k[x] \langle \partial \rangle$

$$L_1=(x^2+1)$$
 ∂^2 $-(x+2)$ ∂ -3 and $L_2=x^2$ ∂^2 $-(x+3)$ ∂ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

 $lpha^{(\ell)}$ represented by vector $V_\ell \in k(x)^4$

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

 $lpha^{(\ell)}$ represented by vector $V_\ell \in k(x)^4$

$$V_{\ell+1} = \partial_x V_{\ell} + T \cdot V_{\ell} = \theta V_{\ell} \text{ with } T = \begin{bmatrix} 0 & \frac{3}{x^2 + 1} & \\ 1 & \frac{x + 2}{x^2 + 1} & \\ & 0 & \frac{2}{x^2} \\ & & 1 & \frac{x + 3}{x^2} \end{bmatrix}$$

$$L_1 = (x^2 + 1) \ \partial^2 - (x + 2) \ \partial$$
 -3 and $L_2 = x^2 \ \partial^2 - (x + 3) \ \partial$ -2

Compute $L = L_1 \oplus L_2$

a minimal order operator s.t. $L(\alpha) = L(\alpha_1 + \alpha_2) = 0$ for all α_1, α_2 s.t. $L_1(\alpha_1) = L_2(\alpha_2) = 0$

Algorithm: Express $\alpha^{(\ell)}$, for $\ell = 0, 1, ...$, on the generating set $A = (\alpha_1, \alpha'_1, \alpha_2, \alpha'_2)$ until a linear relation is found

 $lpha^{(\ell)}$ represented by vector $V_\ell \in k(x)^4$

$$V_{\ell+1} = \partial_x V_{\ell} + T \cdot V_{\ell} = \theta V_{\ell} \text{ with } T = \begin{bmatrix} 0 & \frac{3}{x^2 + 1} \\ 1 & \frac{x + 2}{x^2 + 1} \\ & 0 & \frac{2}{x^2} \\ & 1 & \frac{x + 3}{x^2} \end{bmatrix}$$

One specific instance of a class of algorithms

Focus on several problems:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

Focus on several problems:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

Focus on several problems with specific T, a:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem

Input: $T \in k(x)^{n \times n}$, $a \in k[x]^n$, let $\theta = \partial_x + T$ **Output:** $\eta = (\eta_0, \dots, \eta_\rho) \in k[x]^{\rho+1} \setminus \{0\}$ s.t.: $\eta_0 \cdot a + \eta_1 \cdot \theta a + \dots + \eta_\rho \cdot \theta^\rho a = 0$

and $\rho \leq n$ minimal

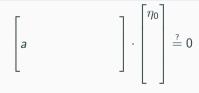
Focus on several problems with specific T, a:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem

Input: $T \in k(x)^{n \times n}$, $a \in k[x]^n$, let $\theta = \partial_x + T$ **Output:** $\eta = (\eta_0, \dots, \eta_\rho) \in k[x]^{\rho+1} \setminus \{0\}$ s.t.: $\eta_0 \cdot a + \eta_1 \cdot \theta a + \dots + \eta_\rho \cdot \theta^\rho a = 0$

and $\rho \leq n$ minimal



Pseudo-Krylov system

Focus on several problems with specific T, a:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem

Input: $T \in k(x)^{n \times n}$, $a \in k[x]^n$, let $\theta = \partial_x + T$ **Output:** $\eta = (\eta_0, \dots, \eta_\rho) \in k[x]^{\rho+1} \setminus \{0\}$ s.t.: $\eta_0 \cdot a + \eta_1 \cdot \theta a + \dots + \eta_\rho \cdot \theta^\rho a = 0$

and $\rho \leq n$ minimal

 $\begin{bmatrix} a & \theta a \\ & & \end{bmatrix} \cdot \begin{bmatrix} \eta_0 \\ \eta_1 \\ & \\ \end{bmatrix} \stackrel{?}{=} 0$

Pseudo-Krylov system

Focus on several problems with specific T, a:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem

Input: $T \in k(x)^{n \times n}$, $a \in k[x]^n$, let $\theta = \partial_x + T$ **Output:** $\eta = (\eta_0, \dots, \eta_\rho) \in k[x]^{\rho+1} \setminus \{0\}$ s.t.: $\eta_0 \cdot a + \eta_1 \cdot \theta a + \dots + \eta_\rho \cdot \theta^\rho a = 0$

and $\rho \leq n$ minimal

 $\begin{bmatrix} a & \theta a & \cdots \end{bmatrix} \cdot \begin{bmatrix} \eta_0 \\ \eta_1 \\ \vdots \end{bmatrix} \stackrel{?}{=} 0$

Pseudo-Krylov system

Focus on several problems with specific T, a:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem

Input: $T \in k(x)^{n \times n}$, $a \in k[x]^n$, let $\theta = \partial_x + T$ **Output:** $\eta = (\eta_0, \dots, \eta_\rho) \in k[x]^{\rho+1} \setminus \{0\}$ s.t.: $\eta_0 \cdot a + \eta_1 \cdot \theta a + \dots + \eta_\rho \cdot \theta^\rho a = 0$

and $\rho \leq n$ minimal

 $\begin{bmatrix} a & \theta a & \cdots & \theta^{\rho} a \end{bmatrix} \cdot \begin{bmatrix} \eta_0 \\ \eta_1 \\ \vdots \\ \eta_{\rho} \end{bmatrix} = 0$

Pseudo-Krylov system

Focus on several problems with specific T, a:

- Closure properties (LCLM, Symmetric product) [Stanley 1980] [van der Hoeven 2016] [Bostan, Chyzak, Li, Salvy 2012]
- Computation of a differential equation satisfied by an algebraic function
 [Bostan, Chyzak, Lecerf, Salvy, Schost 2007]
- Creative telescoping based on Hermite reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem

Input: $T \in k(x)^{n \times n}$, $a \in k[x]^n$, let $\theta = \partial_x + T$ **Output:** $\eta = (\eta_0, \dots, \eta_\rho) \in k[x]^{\rho+1} \setminus \{0\}$ s.t.: $\eta_0 \cdot a + \eta_1 \cdot \theta a + \dots + \eta_\rho \cdot \theta^\rho a = 0$ and $\rho \leq n$ minimal

Known bounds on deg η ?

- General arguments (col. by col.) \rightarrow weak bounds
- Ad hoc arguments for special $T \rightarrow \text{tight bounds}$

Contributions

Key observation: In all specific problems, a structure inherited from

$$T = XM^{-1}Y$$
 with X, M, Y polynomial matrices and det M small
Realisation [Coppel 1974]

Contributions

Key observation: In all specific problems, a structure inherited from

$$T = XM^{-1}Y$$
 with X, M, Y polynomial matrices and det M small
Realisation [Coppel 1974]

Theorem (G. 2025)

Let $T = XM^{-1}Y$ and $\delta = \deg \det M$. (+ technical assumptions in ISSAC paper) Then, there exists a solution with $\deg \eta_i \in O(n\delta)$.

Contributions

Key observation: In all specific problems, a structure inherited from

$$T = XM^{-1}Y$$
 with X, M, Y polynomial matrices and det M small
Realisation [Coppel 1974]

Theorem (G. 2025)

Let $T = XM^{-1}Y$ and $\delta = \deg \det M$. (+ technical assumptions in ISSAC paper) Then, there exists a solution with $\deg \eta_i \in O(n\delta)$.

Unified approach for bounds:

- Exhibit a small realisation $T = XM^{-1}Y$ (*i.e.* with minimal $\delta = \deg \det M$)
- Retrieve or improve the best known bound

Bounds in specific problems

Our unified approach catches the bounds!

Our unified approach catches the bounds!

	Previous Bound	Our Bound	Matrix of the Problem
	$ds^2r + o(ds^2r)$ [BCLS 12]	$ds^2r + o(ds^2r)$	$T = Diag(C_1, C_2)$
SymProd \otimes	$O(dr^{2s})$ [Kauers 14]	$O(dr^{2s-1})$	$T = C_1 \otimes I_{r_2} + I_{r_1} \otimes C_2$
AlgeqtoDiffeq	$4d_y^2d_x + o(d_y^2d_x)$ [BCLSS 07]	$2d_y^2d_x + o(d_y^2d_x)$	$T: a \mod P \mapsto -\partial_y(a)P_x/P_y \mod P$
Hermite	$2d_y^2d_x + o(d_y^2d_x)$ [BCCL 10]	$2d_y^2d_x+o(d_y^2d_x)$	$\mathcal{T} \colon a mod Q \mapsto - herm(Q_x a/Q^2)$

$$T = XM^{-1}Y \in k(x)^{n \times n}$$
, and $\Delta = \det M$, $\delta = \deg \Delta$, $K = \begin{bmatrix} a & \cdots & \theta^{\rho} a \end{bmatrix}$

Denominators of minors of *pseudo*-Krylov matrices

$$T = XM^{-1}Y \in k(x)^{n \times n}$$
, and $\Delta = \det M$, $\delta = \deg \Delta$, $K = \begin{bmatrix} a & \cdots & \theta^{\rho}a \end{bmatrix}$

Theorem

There exists a solution of $\mathbf{K} \cdot \boldsymbol{\eta} = \mathbf{0}$, with deg $\eta_i \in O(n\delta)$.

Denominators of minors of pseudo-Krylov matrices

$$T = XM^{-1}Y \in k(x)^{n \times n}$$
, and $\Delta = \det M$, $\delta = \deg \Delta$, $K = \begin{bmatrix} a & \cdots & \theta^{\rho}a \end{bmatrix}$

Theorem

There exists a solution of $\mathbf{K} \cdot \boldsymbol{\eta} = \mathbf{0}$, with deg $\eta_i \in O(n\delta)$.

Size of η_i related to size of some minors of *K*

Denominators of minors of pseudo-Krylov matrices

$$T = XM^{-1}Y \in k(x)^{n \times n}$$
, and $\Delta = \det M$, $\delta = \deg \Delta$, $K = \begin{vmatrix} a & \cdots & \theta^{\rho}a \end{vmatrix}$

Theorem

There exists a solution of $\mathbf{K} \cdot \boldsymbol{\eta} = \mathbf{0}$, with deg $\eta_i \in O(n\delta)$.

Size of η_i related to size of some minors of K

Key Proposition

For $s_1 \leq \cdots \leq s_r$ and $K = \begin{bmatrix} \theta^{s_1} a & \cdots & \theta^{s_r} a \end{bmatrix}$. Any $r \times r$ minor \mathfrak{m} of K has denominator dividing Δ^{s_r} .

Denominators of minors of pseudo-Krylov matrices

$$T = XM^{-1}Y \in k(x)^{n \times n}$$
, and $\Delta = \det M$, $\delta = \deg \Delta$, $K = \begin{vmatrix} a & \cdots & \theta^{\rho} a \end{vmatrix}$

Theorem

There exists a solution of $\mathbf{K} \cdot \boldsymbol{\eta} = \mathbf{0}$, with deg $\eta_i \in O(n\delta)$.

Size of η_i related to size of some minors of *K*

Key Proposition

For
$$s_1 \leq \cdots \leq s_r$$
 and $K = \begin{bmatrix} \theta^{s_1} a & \cdots & \theta^{s_r} a \end{bmatrix}$.
Any $r \times r$ minor \mathfrak{m} of K has denominator dividing Δ^{s_r}

Naive expansion:

$$\mathfrak{m}=\frac{\cdots}{\Delta^{s_1+\cdots+s_r}}$$

Denominators of minors of pseudo-Krylov matrices

$$T = XM^{-1}Y \in k(x)^{n \times n}$$
, and $\Delta = \det M$, $\delta = \deg \Delta$, $K = \begin{bmatrix} a & \cdots & \theta^{\rho}a \end{bmatrix}$

Theorem

There exists a solution of $\mathbf{K} \cdot \boldsymbol{\eta} = \mathbf{0}$, with deg $\eta_i \in O(n\delta)$.

Size of η_i related to size of some minors of K

Key Proposition

For
$$s_1 \leq \cdots \leq s_r$$
 and $K = \begin{bmatrix} \theta^{s_1} a & \cdots & \theta^{s_r} a \end{bmatrix}$.
Any $r \times r$ minor \mathfrak{m} of K has denominator dividing Δ^{s_r} .

Naive expansion:

$$\mathfrak{m}=rac{\dots}{\Delta^{s_1+\dots+s_r}}$$

Technical tool: Determinantal denominators [Coppel 74]

$$K = \begin{bmatrix} T^{s_1}a & T^{s_2}a & \cdots & T^{s_r}a \end{bmatrix} \qquad T = XM^{-1}Y \quad \Delta = \det M \quad \text{with } s_1 > 0$$

$$K = \begin{bmatrix} T^{s_1}a & T^{s_2}a & \cdots & T^{s_r}a \end{bmatrix} \qquad T = XM^{-1}Y \quad \Delta = \det M \quad \text{with } s_1 > 0$$

Factorisation:
$$K = T^{s_1} \cdot \begin{bmatrix} a & T^{s_2-s_1}a & \cdots & T^{s_r-s_1}a \end{bmatrix} = T^{s_1} \cdot K'$$

$$K = \begin{bmatrix} T^{s_1}a & T^{s_2}a & \cdots & T^{s_r}a \end{bmatrix} \qquad T = XM^{-1}Y \quad \Delta = \det M \quad \text{with } s_1 > 0$$
Factorisation:
$$K = T^{s_1} \cdot \begin{bmatrix} a & T^{s_2-s_1}a & \cdots & T^{s_r-s_1}a \end{bmatrix} = T^{s_1} \cdot K'$$

Cauchy-Binet: Minor of $\mathbf{K} = \sum (\text{Minor of } \mathbf{T}^{s_1} \cdot \text{Minor of } \mathbf{K}')$

$$K = \begin{bmatrix} T^{s_1}a & T^{s_2}a & \cdots & T^{s_r}a \end{bmatrix} \qquad T = XM^{-1}Y \quad \Delta = \det M \quad \text{with } s_1 > 0$$
Factorisation:
$$K = T^{s_1} \cdot \begin{bmatrix} a & T^{s_2-s_1}a & \cdots & T^{s_r-s_1}a \end{bmatrix} = T^{s_1} \cdot K'$$

Cauchy-Binet: Minor of
$$K = \sum (\text{Minor of } T^{s_1} \cdot \text{Minor of } K')$$
$$= \sum \frac{\cdots}{\Delta^{s_1}} \cdot \frac{\cdots}{\Delta^{s_r - s_1}} \xrightarrow{\text{Induction}}$$

$$K = \begin{bmatrix} T^{s_1}a & T^{s_2}a & \cdots & T^{s_r}a \end{bmatrix} \qquad T = XM^{-1}Y \quad \Delta = \det M \quad \text{with } s_1 > 0$$
Factorisation:
$$K = T^{s_1} \cdot \begin{bmatrix} a & T^{s_2-s_1}a & \cdots & T^{s_r-s_1}a \end{bmatrix} = T^{s_1} \cdot K'$$

Cauchy-Binet: Minor of
$$K = \sum (\text{Minor of } T^{s_1} \cdot \text{Minor of } K')$$

$$= \sum \frac{\cdots}{\Delta^{s_1}} \cdot \frac{\cdots}{\Delta^{s_r - s_1}} \xrightarrow{\text{Induction}}$$
$$= \frac{\cdots}{\Delta^{s_r}}$$

$$K = \begin{bmatrix} T^{s_1}a & T^{s_2}a & \cdots & T^{s_r}a \end{bmatrix} \qquad T = XM^{-1}Y \quad \Delta = \det M \quad \text{with } s_1 > 0$$
Factorisation:
$$K = T^{s_1} \cdot \begin{bmatrix} a & T^{s_2-s_1}a & \cdots & T^{s_r-s_1}a \end{bmatrix} = T^{s_1} \cdot K'$$
Cauchy-Binet:
Minor of $K = \sum (\text{Minor of } T^{s_1} \cdot \text{Minor of } K')$

Cauchy-Binet: Minor of
$$K = \sum_{r=1}^{\infty} (\text{Minor of } I^{s_1} \cdot \text{Minor of } K')$$
$$= \sum_{r=1}^{\infty} \frac{1}{\Delta^{s_r}} \cdot \frac{1}{\Delta^{s_r-s_1}} \xrightarrow{\text{Induction}}{Induction}$$
$$= \frac{1}{\Delta^{s_r}}$$

No such matrix factorisation in the differential case **Remark:** Gives tight estimates on the size of the minimal polynomial of T

$$\mathcal{K} = \begin{bmatrix} \theta^{s_1} u_1 & \theta^{s_2} u_2 & \cdots & \theta^{s_r} u_r \end{bmatrix} \quad \theta = \partial + T \quad T = XM^{-1}Y \quad \Delta = \det M \quad u_i \in k[x]^n$$

$$K = \begin{bmatrix} \theta^{s_1} u_1 & \theta^{s_2} u_2 & \cdots & \theta^{s_r} u_r \end{bmatrix} \quad \theta = \partial + T \quad T = XM^{-1}Y \quad \Delta = \det M \quad u_i \in k[x]^n$$

Use a Left Matrix Fraction Description $T = D^{-1}N$ [Kailath 80] with det $D = \Delta$

$$K = \begin{bmatrix} \theta^{s_1} u_1 & \theta^{s_2} u_2 & \cdots & \theta^{s_r} u_r \end{bmatrix} \quad \theta = \partial + T \quad T = XM^{-1}Y \quad \Delta = \det M \quad u_i \in k[x]^n$$

Use a Left Matrix Fraction Description $T = D^{-1}N$ [Kailath 80] with det $D = \Delta$

$$\mathcal{K} = \begin{bmatrix} u_1^{(s_1)} & \cdots & u_r^{(s_r)} \end{bmatrix} + D^{-1} \cdot \mathcal{K}_1$$

with $K_1 \in k(x)^{n \times r}$ whose column j is

$$K = \begin{bmatrix} \theta^{s_1} u_1 & \theta^{s_2} u_2 & \cdots & \theta^{s_r} u_r \end{bmatrix} \quad \theta = \partial + T \quad T = XM^{-1}Y \quad \Delta = \det M \quad u_i \in k[x]^n$$

Use a Left Matrix Fraction Description $T = D^{-1}N$ [Kailath 80] with det $D = \Delta$

$$\mathcal{K} = \begin{bmatrix} u_1^{(s_1)} & \cdots & u_r^{(s_r)} \end{bmatrix} + D^{-1} \cdot \mathcal{K}_1$$

with $K_1 \in k(x)^{n \times r}$ whose column j is

$$\sum_{i=0}^{s_j-1} heta_1^i\left(\mathit{Nu}_j^{(s_j-1-i)}
ight)$$
 and $heta_1=\partial_{x}+\mathit{T}_1$ with $\mathit{T}_1=(\mathit{N}-\mathit{D}')\mathit{D}^{-1}$

$$K = \begin{bmatrix} \theta^{s_1} u_1 & \theta^{s_2} u_2 & \cdots & \theta^{s_r} u_r \end{bmatrix} \quad \theta = \partial + T \quad T = XM^{-1}Y \quad \Delta = \det M \quad u_i \in k[x]^n$$

Use a Left Matrix Fraction Description $T = D^{-1}N$ [Kailath 80] with det $D = \Delta$

$$K = \begin{bmatrix} u_1^{(s_1)} & \cdots & u_r^{(s_r)} \end{bmatrix} + D^{-1} \cdot K_1$$

with $K_1 \in k(x)^{n \times r}$ whose column j is

$$\sum_{i=0}^{s_j-1} heta_1^i\left(\mathit{Nu}_j^{(s_j-1-i)}
ight)$$
 and $heta_1=\partial_x+\mathit{T}_1$ with $\mathit{T}_1=(\mathit{N}-\mathit{D}')\mathit{D}^{-1}$

By multilinearity of det and induction: Minor of $\mathcal{K}_1 = \frac{\dots}{\Delta^{s_r-1}}$

 $\implies \text{Minor of } K = \frac{\dots}{\Delta^{s_r}} \qquad \text{(by Cauchy Binet + multilinearity)}$

 A common framework for problems on LDEs yielding a unified approach for proving tight degree bounds

- A common framework for problems on LDEs yielding a unified approach for proving tight degree bounds
- Improved proof freed from the technical assumptions

- A common framework for problems on LDEs yielding a unified approach for proving tight degree bounds
- Improved proof freed from the technical assumptions

In progress:

Exploit the pseudo-Krylov structure for the design of efficient algorithms
 Right Description K = ND⁻¹ with N, D polynomial matrices and deg det D small

- A common framework for problems on LDEs yielding a unified approach for proving tight degree bounds
- Improved proof freed from the technical assumptions

In progress:

- Exploit the pseudo-Krylov structure for the design of efficient algorithms
 Right Description K = ND⁻¹ with N, D polynomial matrices and deg det D small
- Apply the same approach to more problems
 - Substitution of algebraic functions into D-finite ones
 - Closure properties for recurrences (sums, products,...)
 - Creative telescoping based on Griffiths-Dwork reduction

- A common framework for problems on LDEs yielding a unified approach for proving tight degree bounds
- Improved proof freed from the technical assumptions

In progress:

- Exploit the pseudo-Krylov structure for the design of efficient algorithms
 Right Description K = ND⁻¹ with N, D polynomial matrices and deg det D small
- Apply the same approach to more problems
 - Substitution of algebraic functions into D-finite ones
 - Closure properties for recurrences (sums, products,...)
 - Creative telescoping based on Griffiths-Dwork reduction
- Non minimal operators (ex: CLM instead of LCLM)

Thank you for your attention!