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D-finite functions

f (x) ∈ k[[x ]] solution of

ar (x)f (r)(x) + · · · + a1(x)f ′(x) + a0(x)f (x) = 0, ai(x) ∈ k[x ]

L(f ) = 0 with L = ar ∂
r + · · · + a1∂ + a0

Examples: exp(x), cos(x), arctan(x), erf(x), . . .

LDE is a good data structure for its solutions

Need efficient algorithms for computing LDEs

Ex (LCLM): Given L1, L2 s.t. L1(f ) = 0, L2(g) = 0 → Find L s.t. L(f + g) = 0.
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LCLM of differential operators

L1 = (x2 + 1) ∂2 −(x + 2) ∂ −3 and L2 = x2 ∂2 −(x + 3) ∂ −2

Compute L = L1 ⊕ L2

a minimal order operator s.t. L(α) = L(α1 + α2) = 0 for all α1, α2 s.t. L1(α1) = L2(α2) = 0

Algorithm: Express α(ℓ), for ℓ = 0, 1, . . . , on the generating set
A = (α1, α′

1, α2, α′
2) until a linear relation is found

α(ℓ) represented by vector Vℓ ∈ k(x)4

Vℓ+1 = ∂xVℓ + T · Vℓ = θVℓ with T =


0 3

x2+1
1 x+2

x2+1
0 2

x2

1 x+3
x2


One specific instance of a class of algorithms
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α = α1 + α2

α′ = α′
1 + α′

2

α′′ = 3
x2 + 1α1 + x + 2

x2 + 1α′
1 + 2

x2 α2 + x + 3
x2 α′

2

α(3) = · · · α(4) = · · ·


1
0
1
0

0
1
0
1

3
x2+1
x+2
x2+1

2
x2

x+3
x2

α(3) α(4)

 ·


η0

η1
...

η4


?= 0

Solve the linear system and get L = η4 · ∂4 + η3 · ∂3 + η2 · ∂2 + η1 · ∂ + η0 ∈ k[x ] ⟨∂⟩
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A unified algorithmic scheme

Focus on several problems:

• Closure properties (LCLM, Symmetric
product) [Stanley 1980] [van der Hoeven 2016]
[Bostan, Chyzak, Li, Salvy 2012]

• Computation of a differential equation
satisfied by an algebraic function
[Bostan, Chyzak, Lecerf, Salvy, Schost 2007]

• Creative telescoping based on Hermite
reduction [Bostan, Chen, Chyzak, Li 2010]

General Problem
Input: T ∈ k(x)n×n, a ∈ k[x ]n, let θ = ∂x + T
Output: η = (η0, . . . , ηρ) ∈ k[x ]ρ+1 \ {0} s.t.:

η0 · a + η1 · θa + · · · + ηρ · θρa = 0

and ρ ≤ n minimal

a θa · · · θρa

 ·


η0

η1
...

ηρ

 0

Pseudo-Krylov system

Goal: Prove tight degree bounds in all specific problems at once
Adopt a unified viewpoint for bounds and algorithms
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Known bounds on deg η?

• General arguments (col. by col.) → weak bounds
• Ad hoc arguments for special T → tight bounds



Contributions

Key observation: In all specific problems, a structure inherited from

T = XM−1Y with X , M, Y polynomial matrices and det M small

Theorem (G. 2025)
Let T = XM−1Y and δ = deg det M. (+ technical assumptions in ISSAC paper)
Then, there exists a solution with deg ηi ∈ O(nδ).

Unified approach for bounds:

• Exhibit a small realisation T = XM−1Y (i.e. with minimal δ = deg det M)
• Retrieve or improve the best known bound
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Bounds in specific problems

Our unified approach catches the bounds!

Previous Bound Our Bound Matrix of the Problem

LCLM ⊕
ds2r + o(ds2r)

ds2r + o(ds2r) T = Diag(C1, C2)
[BCLS 12]

SymProd ⊗
O(dr2s)

O(dr2s−1) T = C1 ⊗ Ir2 + Ir1 ⊗ C2
[Kauers 14]

AlgeqtoDiffeq
4d2

y dx + o(d2
y dx )

2d2
y dx + o(d2

y dx ) T : a mod P 7→ −∂y (a)Px /Py mod P
[BCLSS 07]

Hermite
2d2

y dx + o(d2
y dx )

2d2
y dx + o(d2

y dx ) T : a mod Q 7→ − herm(Qx a/Q2)
[BCCL 10]
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Denominators of minors of pseudo-Krylov matrices

T = XM−1Y ∈ k(x)n×n, and ∆ = det M, δ = deg ∆, K =
[
a · · · θρa

]

Theorem
There exists a solution of K · η = 0, with deg ηi ∈ O(nδ).

Size of ηi related to size of some minors of K

Key Proposition

For s1 ≤ · · · ≤ sr and K =
[
θs1a · · · θsr a

]
.

Any r × r minor m of K has denominator dividing ∆sr .

Naive expansion:
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Technical tool:
Determinantal denominators [Coppel 74]



Warm-up without differentiation: the classical Krylov case

K =
[
T s1a T s2a · · · T sr a

]
T = XM−1Y ∆ = det M with s1 > 0

K = T s1 ·

a T s2−s1a · · · T sr −s1a

 = T s1 · K ′

Minor of K =
∑ (

Minor of T s1 · Minor of K ′)
=

∑ · · ·
∆s1

· · · ·
∆sr −s1

= · · ·
∆sr

No such matrix factorisation in the differential case
Remark: Gives tight estimates on the size of the minimal polynomial of T
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Pseudo-Krylov case (improved proof)

K =
[
θs1u1 θs2u2 · · · θsr ur

]
θ = ∂ + T T = XM−1Y ∆ = det M ui ∈ k[x ]n

Use a Left Matrix Fraction Description T = D−1N [Kailath 80] with det D = ∆

K =
[
u(s1)

1 · · · u(sr )
r

]
+ D−1 · K1

with K1 ∈ k(x)n×r whose column j is

sj −1∑
i=0

θi
1

(
Nu(sj −1−i)

j

)
and θ1 = ∂x + T1 with T1 = (N − D′)D−1

By multilinearity of det and induction: Minor of K1 = ···
∆sr −1

=⇒ Minor of K = · · ·
∆sr
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(by Cauchy Binet + multilinearity)



Conclusion

• A common framework for problems on LDEs yielding
a unified approach for proving tight degree bounds

• Improved proof freed from the technical assumptions

In progress:

• Exploit the pseudo-Krylov structure for the design of efficient algorithms
Right Description K = ND−1 with N, D polynomial matrices and deg det D small

• Apply the same approach to more problems
• Substitution of algebraic functions into D-finite ones
• Closure properties for recurrences (sums, products,. . . )
• Creative telescoping based on Griffiths-Dwork reduction

• Non minimal operators (ex: CLM instead of LCLM)
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Thank you for your attention!
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