
Emulation of the FMA and ADD3 in
rounding-to-nearest floating-point arithmetic

Stef Graillat Jean-Michel Muller

Pascaline Seminar – June 12, 2025

1

The FMA instruction. . . ab + c with one rounding only

▶ correctly rounded evaluation of ab + c, where a,
b, and c are FP numbers;

▶ introduced in the IBM Power1 processor (1990),
and then in the Intel/HP Itanium.

▶ very useful:
• software implementation of correctly rounded ÷ and √;

(FPN q close enough to a/b → a − bq is a FPN)
• faster, and (in general) more accurate evaluation of dot products and

polynomials;
• accurate implementation of transcendental functions:

a0 + xρ, where ρ = a1 + x(a2 + x(a3 + · · ·)) and |x | small.
▶ specified by the IEEE-754 Std on FP arithmetic since 2008
→ implemented in most computing environments;

▶ notable exceptions: Java Virtual Machine, WebAssembly, many
microcontrollers units used for instance in automotive applications.

2

ADD3. . . a + b + c with one rounding only

▶ correctly rounded evaluation of a + b + c;
▶ not specified by IEEE-754 → not provided by computing environments;
▶ and yet, would greatly help

• final rounding step in correctly-rounded elementary functions (Lauter,
2017);

• implementation of double-word and triple-word arithmetics (high precision
numbers represented by unevaluated sums of 2 or 3 FP numbers);

▶ a fast hardware ADD3 would be a nice replacement for 2Sum: the error of
the addition s = RN(a + b) is RN(a + b − s) computed with one ADD3.
(N/A here: we are going to use 2Sum to emulate ADD3!).

3

Aim of this work

▶ software emulation of the FMA, ADD3, and the error of these operations;
(errors: interesting for building compensated algorithms)

▶ high-level algorithms: FP operations/comparisons only (no use of the
internal binary representation of the FP numbers);

▶ binary, precision-p, rounded-to-nearest FP arithmetic, with unbounded
exponent range
→ our results apply to “real life” FP arithmetic provided
underflow/overflow do not occur;

4

Notation

▶ set F of the binary, precision-p FP numbers:

x = Mx · 2ex −p+1,

where Mx , ex ∈ Z, and either Mx = 0, or 2p−1 ≤ |Mx | ≤ 2p − 1;
▶ Mx is the integral significand of x ;
▶ F∗ = F\{0};
▶ RN: round-to-nearest, ties-to-even rounding function

x = y + z → x = RN(y + z)
▶ midpoints the numbers where the value of RN changes. Exactly halfway

between two consecutive FP numbers;

5

Notation

▶ unit round-off: u = 2−p. Bounds the relative error due to rounding;
▶ ulp(t) (for t ∈ R) defined as{

0 if t = 0,

2⌊log2 |t|⌋−p+1 otherwise;

• If t /∈ F, ulp(t) is the distance between the two consecutive FP
numbers that surround t;

• if x ∈ F, x is an integer multiple of ulp(x);
▶ x is a double-word (DW) number if it is an unevaluated sum x = xh + xℓ

of two FP numbers s.t. xh = RN(x).

6

Notation

1
2 1

2u

2

x

RN(x)
ulp(x) = 4u ulp(y) = 8u

4

y

RN(y)

8

Figure 1: The floating-point numbers between 1/2 and 8 in the toy system
p = 3 (i.e., u = 1/8).

7

Adding 3 numbers is a difficult problem!

RN-addition algorithm: only uses operations of the form

z ← RN(±x ± y)

(no comparisons, no tests).

Kornerup, Lefèvre, Louvet, M. (2013):

In binary FP arithmetic with unbounded exponent range, no RN-
addition algorithm returns RN(a + b + c) for all a, b, c ∈ F.

8

RN-addition algorithm: DAG whose vertices are FP + or −

a b c 45 d

+ +

−

+ −

−

· · · · · · · · ·

9

Computing RN(a + b + c) with a RN-add algorithm?

▶ DAG of depth r ;
▶ possible constants are nonzero (nz) multiples of 2k for some k ∈ Z;
▶ a = 2k+p and b = 2k (→ a + b is a midpoint);
▶ |c| ≤ 2k−p−r

→ RN(a + b + c) is the FP number immediately below or above a + b,
depending on the sign of c.

▶ Operations at depth 1 in the DAG:

nz mult. of 2k nz mult. of 2k nz mult. of 2k c c c

+/− +/− +/−

0 or nz mult. of 2k nz mult. of 2k ∈ {−2c, 0, 2c}

▶ after depth-1 operations, available operands are multiples of 2k that do
not depend on c and elements of {−2c, 0, c, 2c}.

10

Computing RN(a + b + c) with a RN-add algorithm?

▶ Induction: after depth-m operations, available operands are multiples of
2k that do not depend on c and elements of {−2mc, . . . , 0, . . . , 2mc}.

▶ Last operation, that outputs the final result:
• its two inputs are not both elements of {−2r−1c, . . . , 0, . . . , 2r−1c},

because when c = 0 it must output RN(a + b);
→ at least one input is a nonzero multiple of 2k that does not depend on c;
→ the output is a multiple of 2k that does not depend on c.

nz mult. of 2k mult. of 2k nz mult. of 2k ic, |i| ≤ 2r−1 jc, |j| ≤ 2r−1 qc, |q| ≤ 2r−1

+/− +/− +/−

0 or nz mult. of 2k that
does not depend on c

nz mult. of 2k that
does not depend on c

= 0 when c = 0

▶ the sign of c cannot change the result.

11

But in real life, the exponents are bounded. . .

Same reasoning: Assuming extremal exponents emin and emax, an RN-addition
algorithm of depth r cannot always return RN(a + b + c) as soon as

r ≤ emax − emin − 2p.

Binary64/double precision: an RN-addition algorithm that always returns
RN(a + b + c) (if such an algorithm exists!) has depth ≥ 1939.

→ Adding 3 numbers is a difficult problem! We cannot
avoid tests/comparisons and/or use of various rounding
functions.

12

Classical results

Theorem 1 (Sterbenz Theorem)
Let a, b ∈ F. If

a
2 ≤ b ≤ 2a,

then a − b ∈ F.

Implies that the subtraction a − b is performed exactly in FP arithmetic.

I have asked Gemini to illustrate Sterbenz’ theorem. . .

13

Computer arithmetic, AI and Surrealism

14

Classical results

Theorem 2 (The error of an addition is exactly representable)
Let a and b be two FP numbers. Let

s = RN(a + b) and r = (a + b)− s.

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions ̸= RN.

Proof: assume |b| ≤ |a| without l.o.g., remark that a, b, s and therefore r are
multiple of ulp(b), and note that |r | ≤ |b| (because s is closer to a + b than
any other FP number, including a).

15

Obtaining r : Fast2Sum and 2Sum

xh ← RN(a + b)
z ← RN(xh − a)
xℓ ← RN(b − z)
return (xh, xℓ)

Alg. 1: Fast2Sum(a, b). Returns (xh, xℓ) ∈ F2 such that xh is the FP number
nearest a + b, and, if |a| ≥ |b| or a = 0, xℓ = (a + b)− xh.

xh ← RN(a + b)
a′ ← RN(xh − b)
b′ ← RN(xh − a′)
δa ← RN(a − a′)
δb ← RN(b − b′)
xℓ ← RN(δa + δb)
return (xh, xℓ)

Alg. 2: 2Sum(a, b). Returns (xh, xℓ) ∈ F2 such that xh is the FP number
nearest a + b, and xℓ = (a + b)− xh.

16

Proof of Fast2Sum (assuming |b| ≤ |a|)

xh ← RN(a + b)
z ← RN(xh − a)
xℓ ← RN(b − z)
return (xh, xℓ)
▶ if a and b have same sign, then |a| ≤ |a + b| ≤ |2a| hence (2a is a FP

number, rounding is increasing) |a| ≤ |xh| ≤ |2a| → (Sterbenz)
z = xh − a. Since r = (a + b)− xh is a FPN and b − z = r , we find
xℓ = RN(b − z) = r .

▶ if a and b have opposite signs then
1. either |b| ≥ 1

2 |a|, which implies (Sterbenz) a + b is a FPN, thus
xh = a + b, z = b and xℓ = 0;

2. or |b| < 1
2 |a|, which implies |a + b| > 1

2 |a|, hence xh ≥ 1
2 |a| (1

2 a is a
FPN, rounding is increasing), thus (Sterbenz)
z = RN(xh − a) = xh − a = b − r . Since r = (a + b)− xh is a FPN
and b − z = r ,we get xℓ = RN(b − z) = r .

17

Classical results 3: The Dekker-Veltkamp multiplication

Require: K = 2s + 1
Require: 2 ≤ s ≤ p − 2

γ ← RN(K · x)
δ ← RN(x − γ)
xh ← RN(γ + δ)
xℓ ← RN(x − xh)
return (xh, xℓ)

Alg. 3: Split(x , s). xh fits in p − s
bits, xℓ fits in s − 1 bits, xh + xℓ = x .

Require: s = ⌈p/2⌉
(ah, aℓ)← Split(a, s)
(bh, bℓ)← Split(b, s)
πh ← RN(a · b)
t1 ← RN(−πh + RN(ah · bh))
t2 ← RN(t1 + RN(ah · bℓ))
t3 ← RN(t2 + RN(aℓ · bh))
πℓ ← RN(t3 + RN(aℓ · bℓ))
return (πh, πℓ)

Alg. 4: DekkerProd(a, b).
πh = RN(ab) and πh + πℓ = ab.

18

Rough explanation of the splitting algorithm

s

−γ

x

δ

+γ

xh

xℓ

+

+

19

(A bit less) classical result using Round-to-Odd

RO(t) =
{

t if t ∈ F
the FPN with an odd integral significand nearest t otherwise.

▶ not specified by IEEE-754
▶ not implemented in current processors of commercial significance
▶ known emulation uses internal binary representation (not doable with

“high level” algorithms?)
▶ many nice properties, among them:

Theorem 3 (Boldo & Melquiond, 2008)
Let x ∈ F and z ∈ R. If p ≥ 4 and 6 · |z| ≤ x then

RN(x + RO(z)) = RN(x + z).

20

Let x ∈ F and z ∈ R. If p ≥ 4 and 6 · |z| ≤ x then

RN(x + RO(z)) = RN(x + z).

▶ trivial if z is a FP number, since RO(z) = z;
▶ if z is not a FP number then RO(z) has an odd integral significand
→ x + RO(z) is not a midpoint

x

RO(z) 1

100000000000000 · · ·midpoint:

▶ the distance between x + z and x + RO(z) is < ulp(z);
▶ as x + RO(z) and the midpoints around x are multiple of ulp(z), the

midpoint nearest x + RO(z) is at a distance ≥ ulp(z) from x + RO(z);
→ no midpoint between x + z and x + RO(z).

21

FMA and ADD3 → DW number+ FP number

a × b + c a + b + c

xh + xℓ + c
Dekker product

2S
um

→ we focus on: compute xh + xℓ + c, where |xℓ| ≤ 1
2 ulp(xh).

22

Easy if we have Round-to-Odd. . .

RN(xh + xℓ + c)
▶ define (sh, sℓ) = 2Sum(xh, c), so that xh + xℓ + c = sh + sℓ + xℓ;
▶ Theorem 3 implies

RN(sh + sℓ + xℓ) = RN(sh + RO(sℓ + xℓ)).

▶ Boldo and Melquiond give a solution for emulating RO(sℓ + xℓ).

23

Determining if x ∈ F∗ = ±2k or ±3 · 2k , k ∈ Z

Theorem 4
If p ≥ 4, the number x ∈ F∗ is of the form ±2k or ±3 · 2k , with k ∈ Z, if and
only if

RN
[
RN

((
2p−2 + 1

)
· x

)
− 2p−2x

]
= x . (1)

▶ Nonzero FPN x : odd integer Nx times power of 2;
▶ if Nx ≤ 3 then (2p−2 + 1)Nx ≤ 2p − 1 (as soon as p ≥ 4), hence

(2p−2 + 1)x is aFPN;
▶ if Nx ≥ 5 then (2p−2 + 1)Nx is an odd integer > 2p → (2p−2 + 1)x is not

a FPN;
▶ Sterbenz theorem → subtraction is exact.

Condition p ≥ 4 is necessary: a counterexample with p = 3 is x = 6.

24

Determining if x ∈ F∗ = ±2k or ±3 · 2k , k ∈ Z

Require: P = 2p−2 + 1
Require: Q = 2p−2

L← RN(P · x)
R ← RN(Q · x)
∆← RN(L− R)
return (∆ ̸= x)

Alg. 5: IsNot1or3TimesPowerOf2(x). Returns true iff |x | ̸= 0 or 2k or 3 · 2k .

25

Computation of RN(xh + xℓ + c)

1: (sh, sℓ)← 2Sum(xh, c)
2: (vh, vℓ)← 2Sum(xℓ, sℓ)
3: if IsNot1or3TimesPowerOf2(vh) or vℓ = 0 then
4: z ← RN(sh + vh)
5: else
6: if vℓ and vh have the same sign then
7: z ← RN (sh + RN (1.125vh))
8: else
9: z ← RN (sh + RN (0.875vh))

10: end if
11: end if
12: return z

Alg. 6: CR-DWPlusFP(xh, xℓ, c). Computes RN(xh + xℓ + c).

Remarks:
▶ xh + xℓ + c = sh + vh + vℓ;
▶ The constants 1.125 = 9/8 and 0.875 = 7/8 that appear in Alg. 6 are

exactly representable as soon as p ≥ 4;
26

Analysis of Algorithm CR-DWPlusFP

Theorem 5
If p ≥ 5, the number z returned by Algorithm CR-DWPlusFP (Algorithm 6)
satisfies

z = RN(xh + xℓ + c).

We just give a sketch of the proof.

Define Σ = RN(xh + xℓ + c).
First, 2Sum → variables sh, vh and vℓ in Algorithm 6 satisfy

sh + vh + vℓ = xh + xℓ + c, so that Σ = RN(sh + vh + vℓ),
|vℓ| ≤ 1

2 ulp(vh).

→ discussion on sh + vh + vℓ.

27

Analysis of Algorithm CR-DWPlusFP

1: (sh, sℓ)← 2Sum(xh, c)
2: (vh, vℓ)← 2Sum(xℓ, sℓ)
3: if IsNot1or3TimesPowerOf2(vh)

or vℓ = 0 then
4: z ← RN(sh + vh)
5: else
6: if vℓ and vh have the same sign

then
7: z ← RN

(
sh + RN

(9
8 vh

))
8: else
9: z ← RN

(
sh + RN

(7
8 vh

))
10: end if
11: end if
12: return z

• If p ≥ 5, when vh = ±2k or
±3 · 2k , the terms (7/8)vh and
(9/8)vh are FP numbers;

• case xh = 0 straightforward;
• If xh, xℓ, and c are multiplied by
±2k , then sh, sℓ, vh, vℓ, z and Σ
are multiplied by ±2k ;

• If we interchange xh and c, same
result → prove the theorem in the
case |xh| ≥ |c|;

⇒ We focus on 1 ≤ xh ≤ 2− 2u and |c| ≤ xh.

28

Analysis of Algorithm CR-DWPlusFP

We focus on 1 ≤ xh ≤ 2− 2u and |c| ≤ xh.

1: (sh, sℓ)← 2Sum(xh, c)
2: (vh, vℓ)← 2Sum(xℓ, sℓ)
3: if IsNot1or3TimesPowerOf2(vh)

or vℓ = 0 then
4: z ← RN(sh + vh)
5: else
6: if vℓ and vh have the same sign

then
7: z ← RN

(
sh + RN

(9
8 vh

))
8: else
9: z ← RN

(
sh + RN

(7
8 vh

))
10: end if
11: end if
12: return z

• If −xh ≤ c ≤ − xh
2 , Sterbenz

⇒ sℓ = 0⇒ straightforward;
• we focus on

−xh

2 < c ≤ xh,

which implies

1
2 ≤ sh ≤ 4− 4u.

29

Analysis of Algorithm CR-DWPlusFP

1: (sh, sℓ)← 2Sum(xh, c)
2: (vh, vℓ)← 2Sum(xℓ, sℓ)
3: if IsNot1or3TimesPowerOf2(vh)

or vℓ = 0 then
4: z ← RN(sh + vh)
5: else
6: if vℓ and vh have same sign

then
7: z ← RN

(
sh + RN

(
9
8 vh

))
8: else
9: z ← RN

(
sh + RN

(
7
8 vh

))
10: end if
11: end if
12: return z

Reminder: Σ = RN(sh +vh +vℓ), and 1
2 ≤

sh ≤ 4− 4u
• Case A: 1

2 ≤ sh ≤ 1− u, sh multiple of
u, |sℓ| ≤ u

2 , |vh| ≤ 3u
2 , |vℓ| ≤ u2;

• Case B: 1 ≤ sh ≤ 2− 2u, sh mult. of
2u, |sℓ| ≤ u, |vh| ≤ 2u, |vℓ| ≤ u2;

• Case C: 2 ≤ sh ≤ 4− 4u, sh mult. of
4u, |sℓ| ≤ 2u, |vh| ≤ 3u, |vℓ| ≤ 2u2.

• In all cases distance between sh + vh
and a midpoint multiple of ulp(vh). As
|vℓ| ≤ 1

2 ulp(vh), If sh + vh is not a
midpoint, no midpoint between sh + vh
and sh + vh + vℓ → Σ = RN(sh + vh).

30

When can sh + vh be a midpoint?

The midpoints are the odd multiples of u
4 in [1

4 , 1
2), the odd multiples of u

2 in
[1

2 , 1), and the odd multiples of u in [1, 2). Therefore, if sh + vh is a midpoint:

▶ In Case A: if sh = 1
2 then vh ∈ {− 3u

4 ,− u
4 , u

2 , 3u
2 }, and if 1

2 < sh ≤ 1− u
then vh ∈ {− 3u

2 ,− u
2 , u

2 , 3u
2 };

▶ In Case B: if sh = 1 then vh ∈ {− 3u
2 ,− u

2 , u}, and if 1 < sh ≤ 2− 2u then
vh ∈ {−u, u};

▶ In Case C: if sh = 2 then vh ∈ {−3u,−u, 2u} and if 2 < sh ≤ 4− 4u then
vh ∈ {−2u, 2u}.

In all cases, vh is of the form ±2k or ±3 · 2k .

31

Analysis of Algorithm CR-DWPlusFP

1: (sh, sℓ)← 2Sum(xh, c)
2: (vh, vℓ)← 2Sum(xℓ, sℓ)
3: if IsNot1or3TimesPowerOf2(vh)

or vℓ = 0 then
4: z ← RN(sh + vh)
5: else
6: if vℓ and vh have the same

sign then
7: z ← RN

(
sh + RN

(9
8 vh

))
8: else
9: z ← RN

(
sh + RN

(7
8 vh

))
10: end if
11: end if
12: return z

• when vh is not of the form ±2k or
±3 · 2k , sh + vh is not a midpoint,
so that

Σ = RN(sh + vh);

• when vh is of the form ±2k or
±3 · 2k , case-by-case analysis.

32

sh ush + vh

if vℓ < 0, Σ is here if vℓ > 0, Σ is here

sh + 9
8 vhsh + 7

8 vh

Figure 2: The subcase 1
2 < sh < 1− u and vh = + u

2 .

33

sh = 1
2 ush + vh

Σ is here if vℓ < 0 Σ is here if vℓ > 0

sh + 9
8 vh sh + 7

8 vh

Figure 3: The subcase sh = 1
2 and vh = − 3u

4 .

34

Emulation of ADD3 and the FMA

1: (xh, xℓ)← 2Sum(a, b)
2: return CR-DWPlusFP(xh, xℓ, c)

Alg. 7: Computation of RN(a + b + c).

1: (xh, xℓ)← DekkerProd(a, b)
2: return CR-DWPlusFP(xh, xℓ, c)

Alg. 8: Computation of FMA(a, b, c) = RN(ab + c).

Theorem 6
In a binary, precision-p (with p ≥ 5), FP arithmetic, Alg. 7 returns
RN(a + b + c) and Alg. 8 returns RN(ab + c) for all a, b, c ∈ F.

35

Error of these operations?
Same as previously: we reduce FMA and ADD3 to xh + xℓ + c.

1: (sh, sℓ)← 2Sum(xh, c)
2: (vh, vℓ)← 2Sum(xℓ, sℓ)
3: (wh, wℓ)← Fast2Sum(sh, vh)
4: if IsNot1or3TimesPowerOf2(vh) or vℓ = 0 then
5: δ ← wℓ

6: z ← wh
7: else
8: if vℓ and vh have the same sign then
9: z ← RN

(
sh + RN

(9
8 vh

))
10: else
11: z ← RN

(
sh + RN

(7
8 vh

))
12: end if
13: α← RN(z − wh)
14: δ ← RN(wℓ − α)
15: end if
16: return (z, δ, vℓ)

Alg. 9: CR-DWPlusFP-with-error. Computes z = RN(xh + xℓ + c), and δ and
vℓ such that z + δ + vℓ = xh + xℓ + c.

36

Error of these operations?

Theorem 7
If p ≥ 5 and |xℓ| ≤ 1

2 ulp(xh), the numbers z, δ, and vℓ returned by Algorithm 9
satisfy

z = RN(xh + xℓ + c)
and

δ + vℓ = xh + xℓ + c − z.

1: (xh, xℓ)← DekkerProd(a, b)
2: return CR-DWPlusFP-with-error(xh, xℓ, c)

Alg. 10: – FMA-with-error(a, b, c). Computes z = RN(ab + c) and δ and vℓ

such that ab + c = z + δ + vℓ.

37

Error of the FMA when there is a hardware FMA

▶ an algorithm was suggested by Boldo and M. in 2005;
▶ Alg. 10: Dekker Product then Alg. 9 → RN(ab + c) and error of that

operation;
▶ however, on platforms with an FMA:

• to obtain xh and xℓ, no need to use Dekker product, since xh = RN(ab)
and xℓ = ab − xh are obtained with a multiplication and an FMA;

• the tests needed to compute z in Alg. 9 are no longer necessary:
z = RN(ab + c) is obtained with an FMA;

• . . . other simplifications that would need to dive into the proof of
Theorem 7.

38

Error of the FMA when there is a hardware FMA

1: zh ← RN(ab + c)
2: xh = RN(ab)
3: xℓ = RN(ab − xh)
4: (sh, sℓ)← 2Sum(xh, c)
5: (vh, vℓ)← 2Sum(xℓ, sℓ)
6: α′ ← RN(zh − sh)
7: δ′ ← RN(vh − α′)
8: return (z, δ′, vℓ)

Alg. 11: Computes z = RN(ab + c) and δ′ and vℓ s.t. ab + c = z + δ′ + vℓ.

39

Our ADD3 vs Boldo and Melquiond’s

Table 1: Time (in seconds) to perform 5× 109 ADD3 operations in binary64, using
the Boldo-Melquiond algorithm and Algorithm 7, on different environments. Each
operand: K × s × F , where F is uniform in [0, 1], s = ±1 (each with probability 1/2),
and K ∈ {1, 2±20, 2±40, 2±60, 2±80} (each with probability 1/9).

Architecture/System compiler and options Boldo-Melquiond Algorithm 7
Intel Corei7 clang (v. 16.0.0) 177 153
under MacOS clang -O3 22 19
Apple M3Pro clang (v. 16.0.0) 142 144
under MacOS clang -O3 7 9
AMD Opteron 6272 gcc (v. 12.2.0) 759 659
under Linux gcc -O3 127 104

clang -O3 168 93
Intel Xeon Gold 6444Y gcc (v. 12.2.0) 95 84
under Linux gcc -O3 18 20

clang -O3 (v. 14.0.6) 18 15

40

Our FMA vs Boldo and Melquiond’s

Table 2: Time (in seconds) to perform 5× 109 FMA operations in binary64, using the
Boldo-Melquiond (BM) algorithm, Algorithm 8, and the FMA provided by the
environment . Each operand: K × s × F , where F is uniform in [0, 1], s = ±1 (each
with probability 1/2), and K ∈ {1, 2±20, 2±40, 2±60, 2±80} (each with probability 1/9).

Architecture/System compiler and options BM Alg. 8 native
Intel Corei7 clang (v. 16.0.0) 258 200 41
under MacOS clang -O3 31 25 10
Apple M3Pro clang (v. 16.0.0) 228 162 7
under MacOS clang -O3 10 9 4
AMD gcc (v. 12.2.0) 1068 856 75
Opteron 6272 gcc -O3 -lm 190 110 42
under Linux clang -O3 -lm 181 95 43
Intel Xeon gcc -lm (v. 12.2.0) 109 98 10
Gold 6444Y gcc -O3 -lm 25 24 10
under Linux clang -O3 -lm (v. 14.0.6) 25 21 10

41

Our error of the FMA vs Boldo and M.’s

Table 3: Time (in seconds) to compute 5× 109 errors of FMA operations in binary64,
using the Boldo-Muller algorithm and Algs 10 and 11, on different environments. Each
operand: K × s × F , where F is uniform in [0, 1], s = ±1 (each with probability 1/2),
and K ∈ {1, 2±20, 2±40, 2±60, 2±80} (each with probability 1/9).

Architecture/System compiler and options Boldo-M. Alg. 10 Alg. 11
Intel Corei7 clang (v. 16.0.0) 166 280 168
under MacOS clang -O3 30 39 33
Apple M3Pro clang (v. 16.0.0) 151 298 143
under MacOS clang -O3 7 13 7
AMD Opteron 6272 gcc (v. 12.2.0) 742 1252 736
under Linux gcc -O3 134 143 140

clang -O3 117 122 130
Intel Xeon Gold 6444Y gcc (v. 12.2.0) 89 144 87
under Linux gcc -O3 23 30 24

clang -O3 (v. 14.0.6) 22 28 22

42

Discussion

▶ primary disadvantage of Algs 6, 7, 8, and 10: presence of tests;
▶ however:

• we have seen that ADD3 with only rounded to nearest +/− is
impossible;

• the test (is some variable of the form ±2k or ±3 · 2k?) almost
always returns false → in practice branch prediction works very well.

▶ ADD3 and FMA:
• performance slightly better or similar (ADD3), or always better

(FMA) than Boldo and Melquiond’s algs (because they test on
parity, which is much harder to predict?)

• high-level algorithms.
▶ Error of the FMA:

• if no hardware FMA, no real choice;
• if hardware FMA: check on your environment, with your

applications;
▶ better error bounds for several double-word or triple-word algorithms.

43

ADD3 can be simplified if an FMA is available

▶ Because it makes it possible to directly and very easily check if sh + vh is
a midpoint.

▶ · · · but that’s another story, that will also allow us to compute
RN(ab + cd) in a similar fashion!

44

