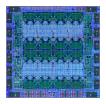
Emulation of the FMA and ADD3 in rounding-to-nearest floating-point arithmetic

Stef Graillat Jean-Michel Muller

Pascaline Seminar - June 12, 2025

The FMA instruction... ab + c with one rounding only

- correctly rounded evaluation of ab + c, where a, b, and c are FP numbers;
- introduced in the IBM Power1 processor (1990), and then in the Intel/HP Itanium.



very useful:

- software implementation of correctly rounded ÷ and √; (FPN q close enough to a/b → a - bq is a FPN)
- faster, and (in general) more accurate evaluation of dot products and polynomials;
- accurate implementation of transcendental functions:

 $a_0 + x\rho$, where $\rho = a_1 + x(a_2 + x(a_3 + \cdots))$ and |x| small.

- ► specified by the IEEE-754 Std on FP arithmetic since 2008 → implemented in most computing environments;
- notable exceptions: Java Virtual Machine, WebAssembly, many microcontrollers units used for instance in automotive applications.

ADD3... a + b + c with one rounding only

- correctly rounded evaluation of a + b + c;
- ▶ not specified by IEEE-754 → not provided by computing environments;
- and yet, would greatly help
 - final rounding step in correctly-rounded elementary functions (Lauter, 2017);
 - implementation of double-word and triple-word arithmetics (high precision numbers represented by unevaluated sums of 2 or 3 FP numbers);
- a fast hardware ADD3 would be a nice replacement for 2Sum: the error of the addition s = RN(a + b) is RN(a + b s) computed with one ADD3. (N/A here: we are going to use 2Sum to emulate ADD3!).

- software emulation of the FMA, ADD3, and the error of these operations; (errors: interesting for building compensated algorithms)
- high-level algorithms: FP operations/comparisons only (no use of the internal binary representation of the FP numbers);
- binary, precision-p, rounded-to-nearest FP arithmetic, with unbounded exponent range

 \rightarrow our results apply to "real life" FP arithmetic provided underflow/overflow do not occur;

• set \mathbb{F} of the binary, precision-p FP numbers:

$$x=M_x\cdot 2^{e_x-p+1},$$

where $M_x, e_x \in \mathbb{Z}$, and either $M_x = 0$, or $2^{p-1} \le |M_x| \le 2^p - 1$;

- *M_x* is the integral significand of *x*;
- $\blacktriangleright \mathbb{F}^* = \mathbb{F} \setminus \{0\};$
- RN: round-to-nearest, ties-to-even rounding function

 $x = y + z \rightarrow x = RN(y + z)$

 midpoints the numbers where the value of RN changes. Exactly halfway between two consecutive FP numbers;

Notation

- unit round-off: $u = 2^{-p}$. Bounds the relative error due to rounding;
- ulp(t) (for $t \in \mathbb{R}$) defined as

$$\begin{cases} 0 & \text{if } t = 0, \\ 2^{\lfloor \log_2 |t| \rfloor - p + 1} & \text{otherwise;} \end{cases}$$

- If t ∉ F, ulp(t) is the distance between the two consecutive FP numbers that surround t;
- if $x \in \mathbb{F}$, x is an integer multiple of ulp(x);
- ▶ x is a double-word (DW) number if it is an unevaluated sum $x = x_h + x_\ell$ of two FP numbers s.t. $x_h = RN(x)$.

Notation

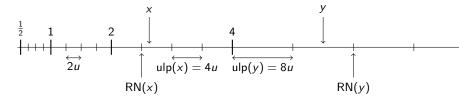


Figure 1: The floating-point numbers between 1/2 and 8 in the toy system p = 3 (*i.e.*, u = 1/8).

RN-addition algorithm: only uses operations of the form

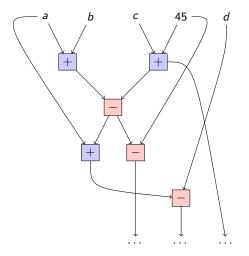
 $z \leftarrow \mathsf{RN}(\pm x \pm y)$

(no comparisons, no tests).

Kornerup, Lefèvre, Louvet, M. (2013):

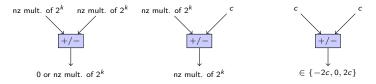
In binary FP arithmetic with unbounded exponent range, no RNaddition algorithm returns RN(a + b + c) for all $a, b, c \in \mathbb{F}$.

RN-addition algorithm: DAG whose vertices are FP + or -



Computing RN(a + b + c) with a RN-add algorithm?

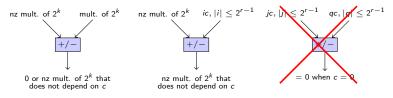
- DAG of depth r;
- ▶ possible constants are nonzero (nz) multiples of 2^k for some $k \in \mathbb{Z}$;
- $a = 2^{k+p}$ and $b = 2^k$ ($\rightarrow a + b$ is a midpoint);
- ► $|c| \leq 2^{k-p-r}$
- → RN(a + b + c) is the FP number immediately below or above a + b, depending on the sign of c.
- Operations at depth 1 in the DAG:



after depth-1 operations, available operands are multiples of 2^k that do not depend on c and elements of {-2c, 0, c, 2c}.

Computing RN(a + b + c) with a RN-add algorithm?

- ▶ Induction: after depth-*m* operations, available operands are multiples of 2^k that do not depend on *c* and elements of $\{-2^mc, ..., 0, ..., 2^mc\}$.
- Last operation, that outputs the final result:
 - its two inputs are not both elements of {-2^{r-1}c,...,0,...,2^{r-1}c}, because when c = 0 it must output RN(a + b);
 - \rightarrow at least one input is a nonzero multiple of 2^k that does not depend on c;
 - \rightarrow the output is a multiple of 2^k that does not depend on c.



the sign of c cannot change the result.

But in real life, the exponents are bounded...

Same reasoning: Assuming extremal exponents e_{\min} and e_{\max} , an RN-addition algorithm of depth *r* cannot always return RN(a + b + c) as soon as

 $r \leq e_{\max} - e_{\min} - 2p$.

Binary64/double precision: an RN-addition algorithm that always returns RN(a + b + c) (if such an algorithm exists!) has depth \geq 1939.

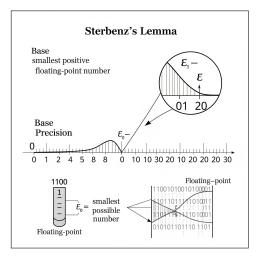
 \rightarrow Adding 3 numbers is a difficult problem! We cannot avoid tests/comparisons and/or use of various rounding functions.

Theorem 1 (Sterbenz Theorem) Let $a, b \in \mathbb{F}$. If $\frac{a}{2} \le b \le 2a$, then $a - b \in \mathbb{F}$.

Implies that the subtraction a - b is performed exactly in FP arithmetic.

I have asked Gemini to illustrate Sterbenz' theorem...

Computer arithmetic, AI and Surrealism



Theorem 2 (The error of an addition is exactly representable) Let a and b be two FP numbers. Let

s = RN(a+b) and r = (a+b) - s.

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions \neq RN.

Proof: assume $|b| \le |a|$ without l.o.g., remark that *a*, *b*, *s* and therefore *r* are multiple of ulp(*b*), and note that $|r| \le |b|$ (because *s* is closer to a + b than any other FP number, including *a*).

Obtaining r: Fast2Sum and 2Sum

 $\begin{array}{l} x_h \leftarrow \mathsf{RN}(a+b) \\ z \leftarrow \mathsf{RN}(x_h-a) \\ x_\ell \leftarrow \mathsf{RN}(b-z) \\ \textbf{return} \quad (x_h, x_\ell) \end{array}$

Alg. 1: Fast2Sum(*a*, *b*). Returns $(x_h, x_\ell) \in \mathbb{F}^2$ such that x_h is the FP number nearest a + b, and, if $|a| \ge |b|$ or a = 0, $x_\ell = (a + b) - x_h$.

$$\begin{array}{l} x_h \leftarrow \mathsf{RN}(a+b) \\ a' \leftarrow \mathsf{RN}(x_h-b) \\ b' \leftarrow \mathsf{RN}(x_h-a') \\ \delta_a \leftarrow \mathsf{RN}(a-a') \\ \delta_b \leftarrow \mathsf{RN}(b-b') \\ x_\ell \leftarrow \mathsf{RN}(\delta_a+\delta_b) \\ \textbf{return} \quad (x_h, x_\ell) \end{array}$$

Alg. 2: 2Sum(a, b). Returns $(x_h, x_\ell) \in \mathbb{F}^2$ such that x_h is the FP number nearest a + b, and $x_\ell = (a + b) - x_h$.

Proof of Fast2Sum (assuming $|b| \le |a|$)

 $x_h \leftarrow \mathsf{RN}(a+b)$ $z \leftarrow \mathsf{RN}(x_h - a)$ $x_\ell \leftarrow \mathsf{RN}(b-z)$ return (x_h, x_ℓ)

▶ if *a* and *b* have same sign, then $|a| \le |a+b| \le |2a|$ hence (2*a* is a FP number, rounding is increasing) $|a| \le |x_h| \le |2a| \rightarrow$ (Sterbenz) $z = x_h - a$. Since $r = (a+b) - x_h$ is a FPN and b - z = r, we find $x_\ell = \text{RN}(b-z) = r$.

if a and b have opposite signs then

- 1. either $|b| \ge \frac{1}{2}|a|$, which implies (Sterbenz) a + b is a FPN, thus $x_h = a + b$, z = b and $x_\ell = 0$;
- 2. or $|b| < \frac{1}{2}|a|$, which implies $|a + b| > \frac{1}{2}|a|$, hence $x_h \ge \frac{1}{2}|a|$ ($\frac{1}{2}a$ is a FPN, rounding is increasing), thus (Sterbenz) $z = RN(x_h - a) = x_h - a = b - r$. Since $r = (a + b) - x_h$ is a FPN and b - z = r, we get $x_\ell = RN(b - z) = r$.

Classical results 3: The Dekker-Veltkamp multiplication

Require:
$$K = 2^{s} + 1$$

Require: $2 \le s \le p - 2$
 $\gamma \leftarrow \text{RN}(K \cdot x)$
 $\delta \leftarrow \text{RN}(x - \gamma)$
 $x_{h} \leftarrow \text{RN}(\gamma + \delta)$
 $x_{\ell} \leftarrow \text{RN}(x - x_{h})$
return (x_{h}, x_{ℓ})

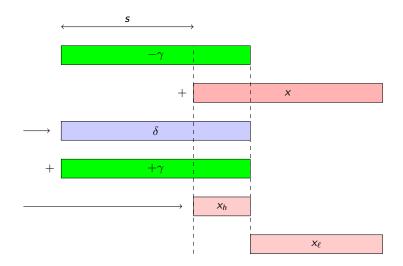
Alg. 3: Split(x, s). x_h fits in p - s bits, x_ℓ fits in s - 1 bits, $x_h + x_\ell = x$.

Require:
$$s = \lceil p/2 \rceil$$

 $(a_h, a_\ell) \leftarrow \text{Split}(a, s)$
 $(b_h, b_\ell) \leftarrow \text{Split}(b, s)$
 $\pi_h \leftarrow \text{RN}(a \cdot b)$
 $t_1 \leftarrow \text{RN}(-\pi_h + \text{RN}(a_h \cdot b_h))$
 $t_2 \leftarrow \text{RN}(t_1 + \text{RN}(a_h \cdot b_\ell))$
 $t_3 \leftarrow \text{RN}(t_2 + \text{RN}(a_\ell \cdot b_h))$
 $\pi_\ell \leftarrow \text{RN}(t_3 + \text{RN}(a_\ell \cdot b_\ell))$
return (π_h, π_ℓ)

Alg. 4: DekkerProd(a, b). $\pi_h = RN(ab)$ and $\pi_h + \pi_\ell = ab$.

Rough explanation of the splitting algorithm



(A bit less) classical result using Round-to-Odd

 $\mathsf{RO}(t) = \begin{cases} t \text{ if } t \in \mathbb{F} \\ \text{the FPN with an odd integral significand nearest } t \text{ otherwise.} \end{cases}$

- not specified by IEEE-754
- not implemented in current processors of commercial significance
- known emulation uses internal binary representation (not doable with "high level" algorithms?)
- many nice properties, among them:

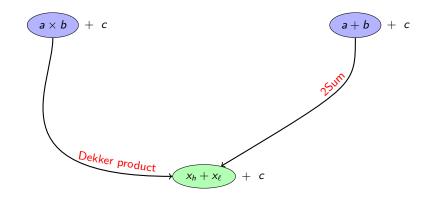
Theorem 3 (Boldo & Melquiond, 2008) Let $x \in \mathbb{F}$ and $z \in \mathbb{R}$. If $p \ge 4$ and $6 \cdot |z| \le x$ then RN(x + RO(z)) = RN(x + z). Let $x \in \mathbb{F}$ and $z \in \mathbb{R}$. If $p \ge 4$ and $6 \cdot |z| \le x$ then

RN(x + RO(z)) = RN(x + z).

- trivial if z is a FP number, since RO(z) = z;
- if z is not a FP number then RO(z) has an odd integral significand → x + RO(z) is not a midpoint

- ► the distance between x + z and x + RO(z) is < ulp(z);</p>
- As x + RO(z) and the midpoints around x are multiple of ulp(z), the midpoint nearest x + RO(z) is at a distance ≥ ulp(z) from x + RO(z);
- \rightarrow no midpoint between x + z and x + RO(z).

FMA and ADD3 \rightarrow DW number+ FP number



 \rightarrow we focus on: compute $x_h + x_\ell + c$, where $|x_\ell| \leq \frac{1}{2} ulp(x_h)$.

Easy if we have Round-to-Odd...

 $RN(x_h + x_\ell + c)$

• define
$$(s_h, s_\ell) = 2Sum(x_h, c)$$
, so that $x_h + x_\ell + c = s_h + s_\ell + x_\ell$;

Theorem 3 implies

```
\mathsf{RN}(s_h + s_\ell + x_\ell) = \mathsf{RN}(s_h + \mathsf{RO}(s_\ell + x_\ell)).
```

▶ Boldo and Melquiond give a solution for emulating $RO(s_{\ell} + x_{\ell})$.

Determining if $x \in \mathbb{F}^* = \pm 2^k$ or $\pm 3 \cdot 2^k$, $k \in \mathbb{Z}$

Theorem 4

If $p \ge 4$, the number $x \in \mathbb{F}^*$ is of the form $\pm 2^k$ or $\pm 3 \cdot 2^k$, with $k \in \mathbb{Z}$, if and only if

$$\operatorname{RN}\left[\operatorname{RN}\left(\left(2^{p-2}+1\right)\cdot x\right)-2^{p-2}x\right]=x.$$
(1)

- Nonzero FPN x: odd integer N_x times power of 2;
- If N_x ≤ 3 then (2^{p-2} + 1)N_x ≤ 2^p − 1 (as soon as p ≥ 4), hence (2^{p-2} + 1)x is aFPN;
- if $N_x \ge 5$ then $(2^{p-2}+1)N_x$ is an odd integer $> 2^p \rightarrow (2^{p-2}+1)x$ is not a FPN;
- Sterbenz theorem \rightarrow subtraction is exact.

Condition $p \ge 4$ is necessary: a counterexample with p = 3 is x = 6.

Require:
$$P = 2^{p-2} + 1$$

Require: $Q = 2^{p-2}$
 $L \leftarrow RN(P \cdot x)$
 $R \leftarrow RN(Q \cdot x)$
 $\Delta \leftarrow RN(L - R)$
return $(\Delta \neq x)$

Alg. 5: IsNot1or3TimesPowerOf2(x). Returns true iff $|x| \neq 0$ or 2^k or $3 \cdot 2^k$.

Computation of $RN(x_h + x_\ell + c)$

```
1: (s_h, s_\ell) \leftarrow 2 \operatorname{Sum}(x_h, c)
 2: (v_h, v_\ell) \leftarrow 2 \operatorname{Sum}(x_\ell, s_\ell)
 3: if IsNot1or3TimesPowerOf2(v_h) or v_\ell = 0 then
 4: z \leftarrow \mathsf{RN}(s_h + v_h)
 5: else
 6:
         if v_{\ell} and v_{h} have the same sign then
 7:
              z \leftarrow \mathsf{RN}(s_h + \mathsf{RN}(1.125v_h))
 8: else
              z \leftarrow \mathsf{RN}(s_h + \mathsf{RN}(0.875v_h))
 9:
10:
        end if
11: end if
12: return z
```

Alg. 6: CR-DWPlusFP(x_h, x_ℓ, c). Computes RN($x_h + x_\ell + c$).

Remarks:

 $x_h + x_{\ell} + c = s_h + v_h + v_{\ell};$

► The constants 1.125 = 9/8 and 0.875 = 7/8 that appear in Alg. 6 are exactly representable as soon as p ≥ 4;

Theorem 5

If $p \ge 5$, the number z returned by Algorithm CR-DWPlusFP (Algorithm 6) satisfies

 $z = \mathsf{RN}(x_h + x_\ell + c).$

We just give a sketch of the proof.

Define $\Sigma = \text{RN}(x_h + x_\ell + c)$. First, 2Sum \rightarrow variables s_h , v_h and v_ℓ in Algorithm 6 satisfy

 $s_h + v_h + v_\ell = x_h + x_\ell + c$, so that $\Sigma = \mathsf{RN}(s_h + v_h + v_\ell)$, $|v_\ell| \le \frac{1}{2}\mathsf{ulp}(v_h)$.

 \rightarrow discussion on $s_h + v_h + v_\ell$.

1: $(s_h, s_\ell) \leftarrow 2Sum(x_h, c)$ 2: $(v_h, v_\ell) \leftarrow 2Sum(x_\ell, s_\ell)$ 3: if IsNot1or3TimesPowerOf2 (v_h) or $v_\ell = 0$ then

4:
$$z \leftarrow \mathsf{RN}(s_h + v_h)$$

- 5: else
- 6: **if** v_{ℓ} and v_h have the same sign **then**

7:
$$z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{9}{8}v_h\right)\right)$$

8: else

9:
$$z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{7}{8}v_h\right)\right)$$

- 10: end if
- 11: end if
- 12: return z

- If $p \ge 5$, when $v_h = \pm 2^k$ or $\pm 3 \cdot 2^k$, the terms $(7/8)v_h$ and $(9/8)v_h$ are FP numbers;
- case x_h = 0 straightforward;
- If x_h , x_ℓ , and c are multiplied by $\pm 2^k$, then s_h , s_ℓ , v_h , v_ℓ , z and Σ are multiplied by $\pm 2^k$;
- If we interchange x_h and c, same result → prove the theorem in the case |x_h| ≥ |c|;

$$\Rightarrow$$
 We focus on $1 \le x_h \le 2 - 2u$ and $|c| \le x_h$.

We focus on $1 \le x_h \le 2 - 2u$ and $|c| \le x_h$.

1:
$$(s_h, s_\ell) \leftarrow 2\operatorname{Sum}(x_h, c)$$

2: $(v_h, v_\ell) \leftarrow 2\operatorname{Sum}(x_\ell, s_\ell)$
3: if IsNotlor3TimesPowerOf2 (v_h)
or $v_\ell = 0$ then
4: $z \leftarrow \operatorname{RN}(s_h + v_h)$
5: else
6: if v_ℓ and v_h have the same sign
then
7: $z \leftarrow \operatorname{RN}(s_h + \operatorname{RN}\left(\frac{9}{8}v_h\right))$
8: else
9: $z \leftarrow \operatorname{RN}\left(s_h + \operatorname{RN}\left(\frac{7}{8}v_h\right)\right)$
10: end if
11: end if
12: return z

- If -x_h ≤ c ≤ -^{x_h}/₂, Sterbenz
 ⇒ s_ℓ = 0 ⇒ straightforward;
- we focus on

$$-\frac{x_h}{2} < c \leq x_h,$$

which implies

$$\frac{1}{2} \leq s_h \leq 4 - 4u.$$

- 1: $(s_h, s_\ell) \leftarrow 2 \operatorname{Sum}(x_h, c)$ 2: $(v_h, v_\ell) \leftarrow 2 \operatorname{Sum}(x_\ell, s_\ell)$ 2: $i_h = 1 \operatorname{Sum}(x_\ell, s_\ell)$
- 3: if IsNot1or3TimesPowerOf2 (v_h) or $v_{\ell} = 0$ then

4:
$$z \leftarrow \mathsf{RN}(s_h + v_h)$$

- 5: else
- 6: if v_{ℓ} and v_h have same sign then
- 7: $z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{9}{8}v_h\right)\right)$
- 8: else
- 9: $z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{7}{8}v_h\right)\right)$
- 10: end if
- 11: end if
- 12: return z

Reminder: $\Sigma = \mathsf{RN}(s_h + v_h + v_\ell)$, and $\frac{1}{2} \leq s_h \leq 4 - 4u$

- Case A: $\frac{1}{2} \leq s_h \leq 1 u$, s_h multiple of u, $|s_\ell| \leq \frac{u}{2}$, $|v_h| \leq \frac{3u}{2}$, $|v_\ell| \leq u^2$;
- Case B: $1 \leq s_h \leq 2 2u$, s_h mult. of 2u, $|s_\ell| \leq u$, $|v_h| \leq 2u$, $|v_\ell| \leq u^2$;
- Case C: $2 \leq s_h \leq 4 4u$, s_h mult. of 4u, $|s_\ell| \leq 2u$, $|v_h| \leq 3u$, $|v_\ell| \leq 2u^2$.
- In all cases distance between $s_h + v_h$ and a midpoint multiple of $ulp(v_h)$. As $|v_\ell| \leq \frac{1}{2}ulp(v_h)$, If $s_h + v_h$ is not a midpoint, no midpoint between $s_h + v_h$ and $s_h + v_h + v_\ell \rightarrow \Sigma = RN(s_h + v_h)$.

The midpoints are the odd multiples of $\frac{u}{4}$ in $[\frac{1}{4}, \frac{1}{2})$, the odd multiples of $\frac{u}{2}$ in $[\frac{1}{2}, 1)$, and the odd multiples of u in [1, 2). Therefore, if $s_h + v_h$ is a midpoint:

- ▶ In Case A: if $s_h = \frac{1}{2}$ then $v_h \in \{-\frac{3u}{4}, -\frac{u}{4}, \frac{u}{2}, \frac{3u}{2}\}$, and if $\frac{1}{2} < s_h \le 1 u$ then $v_h \in \{-\frac{3u}{2}, -\frac{u}{2}, \frac{u}{2}, \frac{3u}{2}\}$;
- ▶ In Case B: if $s_h = 1$ then $v_h \in \{-\frac{3u}{2}, -\frac{u}{2}, u\}$, and if $1 < s_h \le 2 2u$ then $v_h \in \{-u, u\}$;
- ▶ In Case C: if $s_h = 2$ then $v_h \in \{-3u, -u, 2u\}$ and if $2 < s_h \le 4 4u$ then $v_h \in \{-2u, 2u\}$.

In all cases, v_h is of the form $\pm 2^k$ or $\pm 3 \cdot 2^k$.

- 1: $(s_h, s_\ell) \leftarrow 2 \operatorname{Sum}(x_h, c)$
- 2: $(v_h, v_\ell) \leftarrow 2 \operatorname{Sum}(x_\ell, s_\ell)$
- 3: **if** IsNot1or3TimesPowerOf2(v_h) **or** $v_\ell = 0$ **then**

4:
$$z \leftarrow \mathsf{RN}(s_h + v_h)$$

- 5: else
- 6: **if** v_{ℓ} and v_h have the same sign **then**

7:
$$z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{9}{8}v_h\right)\right)$$

8: else

9:
$$z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{7}{8}v_h\right)\right)$$

- 10: end if
- 11: end if
- 12: return z

 when v_h is not of the form ±2^k or ±3 · 2^k, s_h + v_h is not a midpoint, so that

$$\Sigma = \mathsf{RN}(s_h + v_h);$$

• when v_h is of the form $\pm 2^k$ or $\pm 3 \cdot 2^k$, case-by-case analysis.

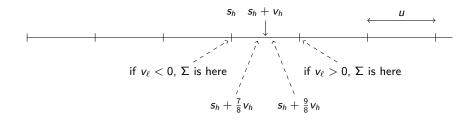


Figure 2: The subcase $\frac{1}{2} < s_h < 1 - u$ and $v_h = +\frac{u}{2}$.

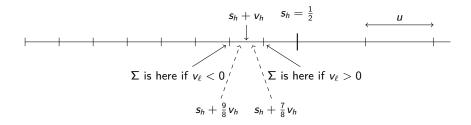


Figure 3: The subcase $s_h = \frac{1}{2}$ and $v_h = -\frac{3u}{4}$.

Emulation of ADD3 and the FMA

1: $(x_h, x_\ell) \leftarrow 2$ Sum(a, b)2: return CR-DWPlusFP (x_h, x_ℓ, c)

Alg. 7: Computation of RN(a + b + c).

1: $(x_h, x_\ell) \leftarrow \text{DekkerProd}(a, b)$ 2: return CR-DWPlusFP (x_h, x_ℓ, c)

Alg. 8: Computation of FMA(a, b, c) = RN(ab + c).

Theorem 6

In a binary, precision-p (with $p \ge 5$), FP arithmetic, Alg. 7 returns RN(a + b + c) and Alg. 8 returns RN(ab + c) for all a, b, $c \in \mathbb{F}$.

Error of these operations?

Same as previously: we reduce FMA and ADD3 to $x_h + x_\ell + c$.

```
1: (s_h, s_\ell) \leftarrow 2 \operatorname{Sum}(x_h, c)
 2: (v_h, v_\ell) \leftarrow 2 \operatorname{Sum}(x_\ell, s_\ell)
 3: (w_h, w_\ell) \leftarrow \mathsf{Fast2Sum}(s_h, v_h)
 4: if IsNot1or3TimesPowerOf2(v_h) or v_\ell = 0 then
 5: \delta \leftarrow w_{\ell}
 6: z \leftarrow w_h
 7: else
 8:
        if v_{\ell} and v_{h} have the same sign then
                z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{9}{8}v_h\right)\right)
 9:
10: else
                z \leftarrow \mathsf{RN}\left(s_h + \mathsf{RN}\left(\frac{7}{8}v_h\right)\right)
11:
12: end if
13: \alpha \leftarrow \mathsf{RN}(z - w_b)
14: \delta \leftarrow \mathsf{RN}(w_{\ell} - \alpha)
15: end if
16: return (z, \delta, v_{\ell})
```

Alg. 9: CR-DWPlusFP-with-error. Computes $z = RN(x_h + x_\ell + c)$, and δ and v_ℓ such that $z + \delta + v_\ell = x_h + x_\ell + c$.

Error of these operations?

Theorem 7

If $p \ge 5$ and $|x_{\ell}| \le \frac{1}{2}ulp(x_h)$, the numbers z, δ , and v_{ℓ} returned by Algorithm 9 satisfy

$$z = \mathsf{RN}(x_h + x_\ell + c)$$

and

$$\delta + \mathbf{v}_{\ell} = \mathbf{x}_h + \mathbf{x}_{\ell} + \mathbf{c} - \mathbf{z}.$$

1: $(x_h, x_\ell) \leftarrow \text{DekkerProd}(a, b)$ 2: **return** CR-DWPlusFP-with-error (x_h, x_ℓ, c)

Alg. 10: – FMA-with-error(a, b, c). Computes z = RN(ab + c) and δ and v_{ℓ} such that $ab + c = z + \delta + v_{\ell}$.

Error of the FMA when there is a hardware FMA

- an algorithm was suggested by Boldo and M. in 2005;
- Alg. 10: Dekker Product then Alg. 9 → RN(ab + c) and error of that operation;
- however, on platforms with an FMA:
 - to obtain x_h and x_ℓ, no need to use Dekker product, since x_h = RN(ab) and x_ℓ = ab x_h are obtained with a multiplication and an FMA;
 - the tests needed to compute z in Alg. 9 are no longer necessary: z = RN(ab + c) is obtained with an FMA;
 - ... other simplifications that would need to dive into the proof of Theorem 7.

Error of the FMA when there is a hardware FMA

1:
$$z_h \leftarrow RN(ab + c)$$

2: $x_h = RN(ab)$
3: $x_\ell = RN(ab - x_h)$
4: $(s_h, s_\ell) \leftarrow 2Sum(x_h, c)$
5: $(v_h, v_\ell) \leftarrow 2Sum(x_\ell, s_\ell)$
6: $\alpha' \leftarrow RN(z_h - s_h)$
7: $\delta' \leftarrow RN(v_h - \alpha')$
8: return (z, δ', v_ℓ)

Alg. 11: Computes z = RN(ab + c) and δ' and v_{ℓ} s.t. $ab + c = z + \delta' + v_{\ell}$.

Our ADD3 vs Boldo and Melquiond's

Table 1: Time (in seconds) to perform 5×10^9 ADD3 operations in binary64, using the Boldo-Melquiond algorithm and Algorithm 7, on different environments. Each operand: $K \times s \times F$, where F is uniform in [0,1], $s = \pm 1$ (each with probability 1/2), and $K \in \{1, 2^{\pm 20}, 2^{\pm 40}, 2^{\pm 60}, 2^{\pm 80}\}$ (each with probability 1/9).

Architecture/System	compiler and options	Boldo-Melquiond	Algorithm 7
Intel Corei7	clang (v. 16.0.0)	177	153
under MacOS	clang -O3	22	19
Apple M3Pro	clang (v. 16.0.0)	142	144
under MacOS	clang -O3	7	9
AMD Opteron 6272	gcc (v. 12.2.0)	759	659
under Linux	gcc -O3	127	104
	clang -O3	168	93
Intel Xeon Gold 6444Y	gcc (v. 12.2.0)	95	84
under Linux	gcc -O3	18	20
	clang -O3 (v. 14.0.6)	18	15

Our FMA vs Boldo and Melquiond's

Table 2: Time (in seconds) to perform 5×10^9 FMA operations in binary64, using the Boldo-Melquiond (BM) algorithm, Algorithm 8, and the FMA provided by the environment . Each operand: $K \times s \times F$, where F is uniform in [0,1], $s = \pm 1$ (each with probability 1/2), and $K \in \{1, 2^{\pm 20}, 2^{\pm 40}, 2^{\pm 60}, 2^{\pm 80}\}$ (each with probability 1/9).

Architecture/System	compiler and options	BM	Alg. 8	native
Intel Corei7	clang (v. 16.0.0)	258	200	41
under MacOS	clang -O3	31	25	10
Apple M3Pro	clang (v. 16.0.0)	228	162	7
under MacOS	clang -O3	10	9	4
AMD	gcc (v. 12.2.0)	1068	856	75
Opteron 6272	gcc -O3 -Im	190	110	42
under Linux	clang -O3 -Im	181	95	43
Intel Xeon	gcc -lm (v. 12.2.0)	109	98	10
Gold 6444Y	gcc -O3 -Im	25	24	10
under Linux	clang -O3 -lm (v. 14.0.6)	25	21	10

Our error of the FMA vs Boldo and M.'s

Table 3: Time (in seconds) to compute 5×10^9 errors of FMA operations in binary64, using the Boldo-Muller algorithm and Algs 10 and 11, on different environments. Each operand: $K \times s \times F$, where F is uniform in [0,1], $s = \pm 1$ (each with probability 1/2), and $K \in \{1, 2^{\pm 20}, 2^{\pm 40}, 2^{\pm 60}, 2^{\pm 80}\}$ (each with probability 1/9).

Architecture/System	compiler and options	Boldo-M.	Alg. 10	Alg. 11
Intel Corei7	clang (v. 16.0.0)	166	280	168
under MacOS	clang -O3	30	39	33
Apple M3Pro	clang (v. 16.0.0)	151	298	143
under MacOS	clang -O3	7	13	7
AMD Opteron 6272	gcc (v. 12.2.0)	742	1252	736
under Linux	gcc -O3	134	143	140
	clang -O3	117	122	130
Intel Xeon Gold 6444Y	gcc (v. 12.2.0)	89	144	87
under Linux	gcc -O3	23	30	24
	clang -O3 (v. 14.0.6)	22	28	22

Discussion

primary disadvantage of Algs 6, 7, 8, and 10: presence of tests;

however:

- we have seen that ADD3 with only rounded to nearest +/- is impossible;
- the test (is some variable of the form ±2^k or ±3 · 2^k?) almost always returns false → in practice branch prediction works very well.
- ADD3 and FMA:
 - performance slightly better or similar (ADD3), or always better (FMA) than Boldo and Melquiond's algs (because they test on parity, which is much harder to predict?)
 - high-level algorithms.

Error of the FMA:

- if no hardware FMA, no real choice;
- if hardware FMA: check on your environment, with your applications;
- better error bounds for several double-word or triple-word algorithms.

ADD3 can be simplified if an FMA is available

- Because it makes it possible to directly and very easily check if $s_h + v_h$ is a midpoint.
- · · · but that's another story, that will also allow us to compute RN(*ab* + *cd*) in a similar fashion!

