Emulation of the FMA and ADD3 in
rounding-to-nearest floating-point arithmetic

Stef Graillat Jean-Michel Muller

Pascaline Seminar — June 12, 2025

: o
@ OL.7o Qv (P

The FMA instruction. .. ab 4 ¢ with one rounding only

» correctly rounded evaluation of ab + ¢, where a,
b, and ¢ are FP numbers;

» introduced in the IBM Powerl processor (1990),
and then in the Intel /HP Iltanium.

» very useful:

e software implementation of correctly rounded = and Vi
(FPN g close enough to a/b — a — bq is a FPN)
e faster, and (in general) more accurate evaluation of dot products and
polynomials;
e accurate implementation of transcendental functions:

ap + xp, where p = a1 + x(a2 + x(a3 + - +)) and |x| small.
» specified by the IEEE-754 Std on FP arithmetic since 2008
— implemented in most computing environments;

» notable exceptions: Java Virtual Machine, WebAssembly, many
microcontrollers units used for instance in automotive applications.

ADD3. .. a+ b+ c with one rounding only

» correctly rounded evaluation of a+ b + ¢;
» not specified by IEEE-754 — not provided by computing environments;
» and yet, would greatly help

e final rounding step in correctly-rounded elementary functions (Lauter,
2017);

e implementation of double-word and triple-word arithmetics (high precision
numbers represented by unevaluated sums of 2 or 3 FP numbers);
» a fast hardware ADD3 would be a nice replacement for 2Sum: the error of
the addition s = RN(a + b) is RN(a+ b — s) computed with one ADD3.
(N/A here: we are going to use 2Sum to emulate ADD3!).

Aim of this work

» software emulation of the FMA, ADD3, and the error of these operations;
(errors: interesting for building compensated algorithms)

» high-level algorithms: FP operations/comparisons only (no use of the
internal binary representation of the FP numbers);

» binary, precision-p, rounded-to-nearest FP arithmetic, with unbounded
exponent range

— our results apply to “real life” FP arithmetic provided
underflow/overflow do not occur;

Notation

» set [of the binary, precision-p FP numbers:
X = MX . 2ex*P+l

where My, e, € Z, and either M, = 0, or 2°71 < |M,| < 2P —1;
» M, is the integral significand of x;
> F* =TF\{0};

» RN: round-to-nearest, ties-to-even rounding function
x =y +z—x=RN(y+2)

» midpoints the numbers where the value of RN changes. Exactly halfway
between two consecutive FP numbers;

Notation

» unit round-off: u = 27P. Bounds the relative error due to rounding;
> ulp(t) (for t € R) defined as

0 if t =0,
ollega [t =P+l iherwise:

e If t ¢ T, ulp(t) is the distance between the two consecutive FP
numbers that surround t;
e if x €F, x is an integer multiple of ulp(x);

» x is a double-word (DW) number if it is an unevaluated sum x = x, + x¢
of two FP numbers s.t. x, = RN(x).

Notation

X y
1
2 1 2 l 4 l
l 1| l]]] l]]] l]]
I L I T T T I T T T I T T
>
2u T ulp(x) =4u ulp(y) =8u T
RN(x) RN(y)

Figure 1: The floating-point numbers between 1/2 and 8 in the toy system
p=3(ie, u=1/8).

Adding 3 numbers is a difficult problem!

RN-addition algorithm: only uses operations of the form
z 4+ RN(xx tx y)
(no comparisons, no tests).

Kornerup, Lefévre, Louvet, M. (2013):

In binary FP arithmetic with unbounded exponent range, no RN-
addition algorithm returns RN(a + b+ ¢) for all a,b,c € F.

RN-addition algorithm: DAG whose vertices are FP + or —

Computing RN(a + b + ¢) with a RN-add algorithm?

I v vuwvuyw

DAG of depth r;

possible constants are nonzero (nz) multiples of 2% for some k € Z;
a=2""and b=2" (= a+ bis a midpoint);

el < 2f7Pr

RN(a + b+ ¢) is the FP number immediately below or above a + b,
depending on the sign of c.

Operations at depth 1 in the DAG:

nz mult. of 25 nz mult. of 2 nz mult. of 2% < < <
)= +/— +/—
0 or nz mult. of 2K nz mult. of 2K € {—2¢,0,2c}

after depth-1 operations, available operands are multiples of 2 that do
not depend on ¢ and elements of {—2c¢, 0, ¢, 2c}.

10

Computing RN(a + b + ¢) with a RN-add algorithm?

» Induction: after depth-m operations, available operands are multiples of
2 that do not depend on ¢ and elements of {—2"c,...,0,...,2"c}.

» Last operation, that outputs the final result:

e its two inputs are not both elements of {—2""1c,...,0,...,2""1c},
because when ¢ = 0 it must output RN(a + b);
—» at least one input is a nonzero multiple of 2% that does not depend on c;

— the output is a multiple of 2% that does not depend on c.

nz mult. of 2K mult. of 2K nz mult. of 2K ic, |i| < 2t jes lJ

+/— +/—
0 or nz mult. of 2¥ that nz mult. of 2 that
does not depend on ¢ does not depend on ¢

» the sign of ¢ cannot change the result.

11

But in real life, the exponents are bounded. . .

Same reasoning: Assuming extremal exponents emin and emax, an RN-addition
algorithm of depth r cannot always return RN(a + b + ¢) as soon as

r S €max — €min — 2P

Binary64/double precision: an RN-addition algorithm that always returns
RN(a + b+ ¢) (if such an algorithm exists!) has depth > 1939.

— Adding 3 numbers is a difficult problem! We cannot
avoid tests/comparisons and/or use of various rounding
functions.

12

Classical results

Theorem 1 (Sterbenz Theorem)
Let a,beF. If
< b<2a,

N o

thena— b € F.

Implies that the subtraction a — b is performed exactly in FP arithmetic.

| have asked Gemini to illustrate Sterbenz’' theorem. ..

13

Computer arithmetic, Al and Surrealism

Sterbenz’s Lemma

Base
smallest positive
floating-point number

Base
Precision E—

o] l\‘JJ‘HJ‘JJ‘HJH‘HH‘H‘H‘

012 4588 0 101030201020 202030

1100 Floating—point
0010100

_ smallest
&= possible
number

Floating-point

14

Classical results

Theorem 2 (The error of an addition is exactly representable)
Let a and b be two FP numbers. Let

s=RN(a+b) and r=(a+b)—s.
If no overflow when computing s, then r is a FP number.
Beware: does not always work with rounding functions # RN.
Proof: assume |b| < |a| without l.0.g., remark that a, b, s and therefore r are

multiple of ulp(b), and note that |r| < |b| (because s is closer to a + b than
any other FP number, including a).

15

Obtaining r: Fast2Sum and 2Sum

xn < RN(a + b)
z < RN(x, — a)
x¢ < RN(b — 2)
return (xn, x¢)

Alg. 1: Fast2Sum(a, b). Returns (xi, x¢) € F? such that xj is the FP number
nearest a+ b, and, if |a| > |b| or a =0, x, = (a+ b) — x».

Xp — RN(a + b)
a’ < RN(x;, — b)
b+ RN(x, — 2)
3.+ RN(a — a)
85 < RN(b — b')
Xp — RN(63 + 6b)
return (xp, x¢)

Alg. 2: 2Sum(a, b). Returns (xp, x¢) € F? such that x is the FP number
nearest a+ b, and x, = (a + b) — x.

16

Proof of Fast2Sum (assuming |b| < |a|)

xn <— RN(a + b)
z + RN(xy — a)
x¢ < RN(b — 2)
return (xu, x¢)

» if a and b have same sign, then |a| < |a + b| < |2a] hence (2a is a FP
number, rounding is increasing) |a| < |xx| < |2a] — (Sterbenz)
z=xp—a. Sincer=(a+b)—xnisa FPN and b — z = r, we find
xt =RN(b—2z)=r.

» if a and b have opposite signs then

1. either |b| > 1|a|, which implies (Sterbenz) a+ b is a FPN, thus
xp=a-+b,z=>band x, =0;

2. or |b| < %|a|, which implies |a+ b| > 1|al, hence x, > 1|a| (3ais a
FPN, rounding is increasing), thus (Sterbenz)
z=RN(xy —a)=xp—a=b—r. Sincer=(a+b) — xs is a FPN
and b—z=r,weget x, =RN(b—2z)=r.

17

Classical results 3: The Dekker-Veltkamp multiplication

Require: s = [p/2]

Require: K =2°+1 (an, a) < Split(a, s)

Require: 2 < s < p—2 (bn, be) < Split(b, s)
v < RN(K - x) 7h < RN(a - b)
d + RN(x =)

t1 < RN(—m, + RN(ay - by
xn < RN(7 +9) t RNEtl n RN(ah(~ be)))
x¢ <= RN(x — xh) ts ¢ RN(t2 + RN(ac - by))
return (s, x¢) ¢+ RN(ts + RN(ac - b))
return (mp, 7¢)

Alg. 3: Split(x, s). x, fitsin p—s Alg. 4: DekkerProd(a, b).
bits, x, fits in s — 1 bits, x, + x¢ = x. Th = RN(ab) and w, + ¢ = ab.

Rough explanation of the splitting algorithm

S

Xh

Xe

10

(A bit less) classical result using Round-to-Odd

RO(t):{ tiftel

the FPN with an odd integral significand nearest t otherwise.

» not specified by IEEE-754
» not implemented in current processors of commercial significance

> known emulation uses internal binary representation (not doable with
“high level” algorithms?)

» many nice properties, among them:

Theorem 3 (Boldo & Melquiond, 2008)

LetxeFandzeR. If p>4and6-|z| < x then

RN(x + RO(z)) = RN(x + z).

20

Let xcFandzeR. If p>4and6-|z| < x then
RN(x + RO(z)) = RN(x + z).

» trivial if z is a FP number, since RO(z) = z;

» if z is not a FP number then RO(z) has an odd integral significand
— x + RO(z) is not a midpoint

[]
| RO(z) 1
N

midpoint: 100000000000000 - - -

> the distance between x + z and x + RO(z) is < ulp(z);

> as x + RO(z) and the midpoints around x are multiple of ulp(z), the
midpoint nearest x + RO(z) is at a distance > ulp(z) from x + RO(z);

— no midpoint between x 4+ z and x 4+ RO(z).

21

FMA and ADD3 — DW number+ FP number

— we focus on: compute x, + x¢ + ¢, where |x;| < %ulp(xh).

27

Easy if we have Round-to-Odd. . .

RN(xn + x¢ + ¢)
» define (sh, s¢) = 2Sum(xn, ¢), so that x, + x¢ + ¢ = sp + s¢ + xe;

» Theorem 3 implies
RN(Sh + s¢ + X[) = RN(Sh + RO(S@ —+ Xg)).

» Boldo and Melquiond give a solution for emulating RO(s; + x¢).

double OddRoundSum (double x, double y){
INTDOUBLE myvh;

DW v;
v = TwoSum(x,y);

myvh. real
(v.l ! H{
(!(myvh.integer & 1)){
((v.h > 0.0) ~ (v.1 < 0.0)){myvh.integer++;}
{myvh.integer—;}}

myvh.real;

23

Determining if x € F* = +2Kor +3-2% ke Z

Theorem 4
If p > 4, the number x € F* is of the form +2 or £3 - 2%, with k € Z, if and
only if
RN [RN ((2°724+1) - x) —2°7%x] = x. (1)
» Nonzero FPN x: odd integer N, times power of 2;

v

if Ny <3 then (272 4+ 1)N, < 2P — 1 (as soon as p > 4), hence
(2772 + 1)x is aFPN;

» if N, > 5 then (272 + 1)N, is an odd integer > 27 — (272 4 1)x is not
a FPN;

» Sterbenz theorem — subtraction is exact.

Condition p > 4 is necessary: a counterexample with p = 3 is x = 6.

24

Determining if x € F* = +2Kor +3-2% ke Z

Require: P =2"241
Require: Q = 2°P~2
L + RN(P - x)
R+ RN(Q - x)
A+ RN(L - R)
return (A # x)

Alg. 5: IsNotlor3TimesPowerOf2(x). Returns true iff |x| # 0 or 2 or 3. 2%,

25

Computation of RN(x; + x; + ¢)

1: (s, se) < 2Sum(xs, c)

2: (vp, ve) < 2Sum(xe, s¢)

3: if IsNotlor3TimesPowerOf2(v4) or v, = 0 then
4. z < RN(sp + vn)

5: else

6: if v, and v, have the same sign then

7 z < RN (sy + RN (1.125v4))

8: else

9: z < RN (s, + RN (0.875v3))
10: end if
11: end if
12: return z

Alg. 6: CR-DWPIusFP(xs, x¢,). Computes RN(x, + x¢ + ¢).

Remarks:

> xp+xe+Cc=sp+ vh+ ve;

» The constants 1.125 = 9/8 and 0.875 = 7/8 that appear in Alg. 6 are
exactly representable as soon as p > 4;

26

Analysis of Algorithm CR-DWPIlusFP

Theorem 5
If p > 5, the number z returned by Algorithm CR-DWPIusFP (Algorithm 6)
satisfies

z = RN(x» + x¢ + ¢).

We just give a sketch of the proof.

Define ¥ = RN(xs + x¢ + ¢).
First, 2Sum — variables sp,, v, and v, in Algorithm 6 satisfy

Sh+ Vi + ve = xp + x¢ + ¢, so that ¥ = RN(sy + v, +),
[ve| < Fulp(vh).

— discussion on sy + v, + v

27

Analysis of Algorithm CR-DWPIlusFP

N

a

(sh, s¢) < 2Sum(xn, c)
(vh, ve) + 2Sum(xe, s¢)
if IsNotlor3TimesPowerOf2(v;)
or vy, = 0 then
z < RN(sp + vp)
else
if v¢ and v, have the same sign
then
z+ RN (s, + RN (3v4))
else
z 4+ RN (sy+ RN (Zvs))
end if

: end if
: return z

If p > 5, when v, = £2% or

+3 . 2k, the terms (7/8)v;, and
(9/8) vy, are FP numbers;

case x, = 0 straightforward;

If xp, x¢, and ¢ are multiplied by
42k, then sy, sp, vp, v, z and &
are multiplied by £2k;

If we interchange x; and ¢, same
result — prove the theorem in the
case |xp| > [cf;

= We focus on 1 < x;, <2 —2u and |c| < xp.

28

Analysis of Algorithm CR-DWPIlusFP

2

®

11:
12:

We focus on 1 < x, <2 — 2w and |[c| < xp.

(sh, s¢) <= 2Sum(xp, c)
(Vh, ve) < 2Sum(xe, s¢)

if IsNotlor3TimesPowerOf2(v;) o f—x<scs< _7?’ Sterbenz
or v, = 0 then = s; = 0 = straightforward,;

z < RN(sp + va) e we focus on
else X
if v, and v, have the same sign 5 <¢ < Xp,
then o .
7+ RN (Sh +RN (%Vh)) which implies
else 1
7+ RN (sy + RN (§v)) 5 Ssh<4—du
end if
end if
return z

20

Analysis of Algorithm CR-DWPIlusFP

WN =

(s, Se) < 2Sum(xp, ©)
t (vh, ve) < 2Sum(xg, s¢)
1 if IsNotlor3TimesPowerOf2(vj) °

AR

Reminder: ¥ = RN(sy+ vy + v¢), and
sh<4—4u

or vp = 0 then
z < RN(sp + vp)

. else

if v, and v, have same sign
then
z < RN (s,, +RN (gv,,))
else

z < RN (s + RN (Zvy))
end if

: end if
: return z

IN

1
2

Case A: % <sp, <1—u, s, multiple of
u, [se| < 4, fval <3, vyl < u?

Case B: 1 <5, <2 —2u, s, mult. of
2u, |se| < u, [val < 2u, |ve| < 0%

Case C: 2 < s, <4 —4u, s, mult. of
4u, |sg| < 2u, |va| < 3u, |ve| < 202

In all cases distance between s, + v,
and a midpoint multiple of ulp(v,). As
[ve| < %ulp(vh), If sp + vp is not a
midpoint, no midpoint between s;, + v,
and s, + v, + vp — £ = RN(sp, + vp).

20

When can s, + v, be a midpoint?

The midpoints are the odd multiples of £ in [, 1), the odd multiples of % in
[3,1), and the odd multiples of u in [1,2). Therefore, if s, + vj is a midpoint:

» In Case A: ifsh fthenvy, e {-3, —4 4 3} andif 1 <s, <1—u

then v, € {—3%, —4 & 33,

» |n Case B: |f s, = 1 then v, € {f—,ff u}, and if 1 < s, < 2 —2u then
vh € {—u,u};

» In Case C: if s, =2 then v, € {—3u, —u,2u} and if 2 < sy, < 4 — 4u then
vh € {—2u,2u}.

In all cases, vj is of the form +2 or +3 - 2%,

21

Analysis of Algorithm CR-DWPIlusFP

@

®

11:
12:

(s, s¢) < 2Sum(xp, c)
(Vh, ve) < 2Sum(xe, s¢)
if IsNotlor3TimesPowerOf2(vy)
or vy = 0 then
Z RN(Sh + Vh)
else
if v and v, have the same
sign then
7« RN (sn + RN (3v))
else
7+ RN (s + RN (v))
end if
end if
return z

e when v, is not of the form +2* or

+3. 2k, Sh + vh is not a midpoint,
so that

Y = RN(S;, + Vh);

e when v, is of the form +2% or

+3. 2 case-by-case analysis.

k¥l

f RE P EN
- / \ ~
e / \ RN
. , \ N
if vv <0, Xishere ‘o if vg >0, X is here
7 \
/ \
7 9
Sh+ gVh Sh+ gVh

Figure 2: The subcase % <sp<l—wuandv,= +%.

23

T T T ™ <
7 \
/

/

2 is here if vy < 0/
/
/

T\
V5 s here if v, > 0

\
\

9 7
Sh+ 5Vh Sh+ gVh

Figure 3: The subcase s, =

1 - _3u
5 and vy, = — .

24

Emulation of ADD3 and the FMA

jury

. (xn, x¢) + 2Sum(a, b)
2: return CR-DWPIusFP(xp, x¢, ¢)

Alg. 7: Computation of RN(a+ b + ¢).

1: (xn, x¢) < DekkerProd(a, b)
2: return CR-DWPIusFP(xp, x¢, ¢)

Alg. 8: Computation of FMA(a, b, c) = RN(ab + ¢).

Theorem 6
In a binary, precision-p (with p > 5), FP arithmetic, Alg. 7 returns
RN(a+ b+ ¢) and Alg. 8 returns RN(ab + ¢) for all a, b, c € F.

25

Error of these operations?

Same as previously: we reduce FMA and ADD3 to x, + x¢ + c.

1: (sh,s¢) < 2Sum(xa, ¢)

2: (vh, ve) < 2Sum(xe, s¢)

3: (wh, we) < Fast2Sum(sp, vp)

4: if IsNotlor3TimesPowerOf2(v;) or v, = 0 then
5: 0+ wy

6: Z < W

7: else

8: if v¢ and v, have the same sign then
9: z <+ RN (s;,+RN (%vh))
10: else
11: z<+ RN (sh+RN (%vh))
12: end if

13: a < RN(z — wy)
14: 5+ RN(w; — a)
15: end if

16: return (z,9, v/)

Alg. 9: CR-DWPIusFP-with-error. Computes z = RN(x; + x¢ + ¢), and ¢ and
ve such that z4+ 6 + ve = xn + x¢ + c.

Error of these operations?

Theorem 7
If p>5 and |x| < %ulp(xh), the numbers z, §, and v, returned by Algorithm 9
satisfy
z=RN(xy + x¢ + ¢)
and

O+ve=xp+x+¢c— 2z

1: (xn, x¢) < DekkerProd(a, b)
2: return CR-DWPIusFP-with-error(xs, x¢, ¢)

Alg. 10: — FMA-with-error(a, b, c). Computes z = RN(ab + ¢) and § and v,
such that ab+c =2+ + v.

7

Error of the FMA when there is a hardware FMA

» an algorithm was suggested by Boldo and M. in 2005;

> Alg. 10: Dekker Product then Alg. 9 — RN(ab + ¢) and error of that
operation;

» however, on platforms with an FMA:

e to obtain x;, and xg, no need to use Dekker product, since x, = RN(ab)
and x; = ab — x;, are obtained with a multiplication and an FMA;

e the tests needed to compute z in Alg. 9 are no longer necessary:
z = RN(ab + c) is obtained with an FMA;

e ...other simplifications that would need to dive into the proof of

Theorem 7.

28

Error of the FMA when there is a hardware FMA

: zp + RN(ab + ¢)

: xn = RN(ab)

: x¢ = RN(ab — xp)

. (s, S¢) 2Sum(xp, €)
: (vh, ve) < 2Sum(xe, s¢)
i’ « RN(zh — sp)

: 8 <+ RN(v, — ')

: return (2,6, v)

O~ WN

Alg. 11: Computes z = RN(ab+c) and §’ and vg s.t. ab+c=2z+§ + v;.

20

Our ADD3 vs Boldo and Melquiond'’s

Table 1: Time (in seconds) to perform 5 x 10° ADD3 operations in binary64, using
the Boldo-Melquiond algorithm and Algorithm 7, on different environments. Each
operand: K x s X F, where F is uniform in [0,1], s = +1 (each with probability 1/2),
and K € {1,2%20 2+40 260 >£80} (each with probability 1/9).

Architecture/System compiler and options | Boldo-Melquiond | Algorithm 7
Intel Corei7 clang (v. 16.0.0) 177
under MacOS clang -O3 22
Apple M3Pro clang (v. 16.0.0) 144
under MacOS clang -03 9
AMD Opteron 6272 gee (v. 12.2.0) 759
under Linux gee -03 127
clang -O3 168
Intel Xeon Gold 6444Y | gcc (v. 12.2.0) 95
under Linux gec -03 20
clang -O3 (v. 14.0.6) | 18

40

Our FMA vs Boldo and Melquiond's

Table 2: Time (in seconds) to perform 5 x 10° FMA operations in binary64, using the
Boldo-Melquiond (BM) algorithm, Algorithm 8, and the FMA provided by the
environment . Each operand: K X s x F, where F is uniform in [0,1], s = £1 (each
with probability 1/2), and K € {1,2%20, 2£40 2£60 >80} (each with probability 1/9).

Architecture/System | compiler and options BM Alg. 8 | native
Intel Corei7 clang (v. 16.0.0) 258
under MacOS clang -03 31
Apple M3Pro clang (v. 16.0.0) 228
under MacOS clang -03 10
AMD gee (v. 12.2.0) 1068
Opteron 6272 gcc -03 -Im 190
under Linux clang -O3 -Im 181
Intel Xeon gee -Im (v. 12.2.0) 109
Gold 6444Y gcec -03 -Im 25
under Linux clang -O3 -Im (v. 14.0.6) | 25

41

Our error of the FMA vs Boldo and M's

Table 3: Time (in seconds) to compute 5 x 10° errors of FMA operations in binary64,
using the Boldo-Muller algorithm and Algs 10 and 11, on different environments. Each
operand: K x s X F, where F is uniform in [0,1], s = +1 (each with probability 1/2),
and K € {1,2%20 2+40 2360 >80} (each with probability 1/9).

Architecture/System compiler and options | Boldo-M. | Alg. 10 | Alg. 11
Intel Corei7 clang (v. 16.0.0) 280
under MacOS clang -03 39
Apple M3Pro clang (v. 16.0.0) 298
under MacOS clang -03 13
AMD Opteron 6272 gee (v. 12.2.0) 1252
under Linux gce -03 143
clang -0O3 130
Intel Xeon Gold 6444Y | gcc (v. 12.2.0) 144
under Linux gec -03 30
clang -O3 (v. 14.0.6) 28

Vi)

Discussion

» primary disadvantage of Algs 6, 7, 8, and 10: presence of tests;
however:
e we have seen that ADD3 with only rounded to nearest +/— is
impossible;
e the test (is some variable of the form +2* or +3 - 2%?7) almost
always returns false — in practice branch prediction works very well.

> ADD3 and FMA:

e performance slightly better or similar (ADD3), or always better
(FMA) than Boldo and Melquiond’s algs (because they test on
parity, which is much harder to predict?)

e high-level algorithms.

» Error of the FMA:

e if no hardware FMA, no real choice;
e if hardware FMA: check on your environment, with your
applications;

P better error bounds for several double-word or triple-word algorithms.

43

ADD3 can be simplified if an FMA is available

» Because it makes it possible to directly and very easily check if s, + vj, is
a midpoint.

» ... but that's another story, that will also allow us to compute
RN(ab + cd) in a similar fashion!

44

