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A symbolic integration problem

dxdyd
Let I(t) = X ay 62 (g.f. of Apéry numbers)
1—(1—xy)z—txyz(1 —x)(1 —y)(1 - 2)

The objective is to compute a linear differential equation (LDE) for /:

2*l ol
t2(£* — 34t + 1) 7 + 3t(2F —51t+1)—+(7t _112t+1)8t

pre +(t—5)=0.
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A symbolic integration problem

dxdyd
Let I(t) = X ay 62 (g.f. of Apéry numbers)
1—(1—xy)z—txyz(1 —x)(1 —y)(1 - 2)

The objective is to compute a linear differential equation (LDE) for /:

2*l ol
t2(£* — 34t + 1) 7 + 3t(2F —51t+1)—+(7t _112t+1)8t

pre +(t—5)=0.

With this LDE it is possible to
1. compute a series expansion,
2. evaluate the integral numerically,

3. prove identities involving /(t).
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Other examples of parametric integrals

The method of creative telescoping can deal with:

® orthogonal polynomials
L e PXT,(x)

An(p) = . ﬁdxa

® special functions

B(c) = /OOO/OOOJl(X)Jl(y) Ja(c W)Zﬁg,

® semi-algebraic integration domains

Chs(r) = // y® Jn(x)dxdy.

x24y2<r2
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Motivating examples of applications

Computation of volumes of compact semi-algebraic sets up to a prescribed
precision 27P (2019: Lairez-Mezzarobba-Safey El Din)

Computation of the generating functions of some walks with small steps in the
quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)

Computation of Feynman integrals for theoretical physics (e.g. 2015:
Ablinger-Behring-Bliimlein-De Freitas-von Manteuffel-Schneider)

Counting k-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)
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Motivating examples of applications

e Computation of volumes of compact semi-algebraic sets up to a prescribed
precision 27P (2019: Lairez-Mezzarobba-Safey El Din)

e Computation of the generating functions of some walks with small steps in the
quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)

e Computation of Feynman integrals for theoretical physics (e.g. 2015:
Ablinger-Behring-Bliimlein-De Freitas-von Manteuffel-Schneider)

e Counting k-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)

NEW! Counting k-regular graphs for k up to 8 (at the end)

4/30



The method of Creative Telescoping

Let I(t) = [ f(x, t)dx.

Creative telescoping (univariate integration w.r.t x)

Find £ € N, ao, ..., as, € K(t) and a function g s.t.

I (x,t 0
a[(t)a(;)-i-"'-i-al(t) ot + ao(t)f(x,t) = e

After integration, we obtain

o'l(t)
ott

RS al(t)a(g(:) + aol(t) = g(b, t) — g(a, t).

ag(t)

often zero
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The method of Creative Telescoping

Write x = x1,..., X,.

Creative telescoping (multivariate integration w.r.t x)

Find £ € N, a1, ..., a, € K(t) and functions gi, ..., gn s.t.

d'F(x, t) If (x, t) = Ogi(x,
()=t alt) = 2 ax,
Let /(t f f(x, t)dx. After integration, we obtain
o'I(t) ol(t) ~ [ Ogi(x,t)
a(t) Tt 4+ a(t) L + aol(t) = / dx.
ott ot ; N OX;

0 assuming  has natural boundaries
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Algebra of Differential Operators: Weyl algebra

The n-th Weyl algebra W,, over K is

® generated by the variables xy,...,x,,01,...,0, and
® subject to the relations [0, x;] = 1 and [x;, xj] = [x;, 9;] = [0;,0;] = 0 for i # j

The homogeneous linear differential equation with polynomial coefficients

&y 2 1 Oy
1)—=L —
6X18X2 + (X + )8X1 + y 0

X1

is represented in W, by
x1010> + (X2 + 1)(91 + 1.
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Algebra of Differential Operators: rational Weyl algebra

The n-th rational Weyl algebra R, over K(xi,...,x,) is

® generated by the variables 0y,...,3d, and
® subject to the relations [0;, x;] = 1 and [x;, x;] = [x;, 9] = [0;,0;] = 0 for i # j

The homogeneous linear differential equations with rational coefficients

x1 Q% 2 Jy
1)— =0
x5 + 1 0x10x OO )8X1 Ty

is represented in Ry by

010 1)o 1.
X22+112+(X+)1+
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D-finite functions

Definition
A function f is D-finite if for each 0; it satisfies a LODE with polynomial coefficients.

Proposition
f is D-finite if and only if R,/ anng,(f) is a finite-dimensional vector space,
where anng (f)={P € R, | P-f =0}.
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D-finite functions
Definition

A function f is D-finite if for each 0; it satisfies a LODE with polynomial coefficients.

Proposition
f is D-finite if and only if R,/ anng,(f) is a finite-dimensional vector space,
where anng (f)={P € R, | P-f =0}.

Example
The function f = Jo(x — y) is D-finite as its annihilator is generated by

(x—y)02+0«+(x—y), 0y+0«

which implies
Rn/ anng,(f) =~ Q(x, y)f & Q(x,y)0x - f.
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Holonomy

Holonomic module

A module W, /S is holonomic if its module dimension is exactly n. Or equivalently if
for every choice of n+ 1 variables | C {x1...,%5,01,...0n}, K(I) N S is non-empty.

Holonomic function
A function f is holonomic if the module W,/ anny, (f) is holonomic, where
anny, (f) ={P e W, | P-f=0}.
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Holonomy

Holonomic module

A module W, /S is holonomic if its module dimension is exactly n. Or equivalently if
for every choice of n+ 1 variables | C {x1...,%5,01,...0n}, K(I) N S is non-empty.

Holonomic function

A function f is holonomic if the module W,/ anny, (f) is holonomic, where
anny, (f) ={P e W, | P-f=0}.

Example

The same function f = Jo(x — y) is also holonomic
as the dimension of W,/ anny, (f) is 2. A basis of
this quotient is given by the image of the monomials
x202y¢ such that x92 { x202.
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D-finiteness vs Holonomy

Theorem
A function is D-finite if and only if it is holonomic.

D-finiteness Holonomy
© Fast computation © Useful for proofs of existence and termination
© Lacks expressivity © Extends to holonomic distribution =
© No general multivariate allows integration over semi-algebraic sets
integration algorithm known @ Slow computation

Today: Mixed approach
Operators with coefficients in Q(t)[x]
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Previous work (non-exhaustive)

Ansatz-based approaches (D-finite)
® Univariate integration of hyperexponential functions (Almkvist-Zeilberger 1990)
® Univariate integration of D-finite functions (Chyzak 2000)

® Fast heuristic for univariate integration of D-finite functions (Koutschan 2010)

Grobner basis approaches (holonomy)
® |ntegration of holonomic functions (Takayama 1990,0aku-Takayama 1997, Chyzak-Salvy 1998)

® Integration of holonomic functions over semi-algebraic sets (Oaku 2013)

Reduction-based approaches (D-finite)
® Univariate integration of bivariate rational functions (Bostan-Chen-Chyzak-Li 2010)
® Multivariate integration of rational functions (Bostan-Lairez-Salvy 2013, Lairez 2016)
® Univariate integration of D-finite functions (van der Hoeven 2018,
Bostan-Chyzak-Lairez-Salvy 2018, Chen-Du-Kauers 2023)
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Input of the algorithm

Let I(t) = [, f(x, t)dx

Assumptions
1. fis holonomic

2. v has natural boundaries, i.e., for any i and a € W, [ d;a- f(x,t)dx = 0.
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Input of the algorithm

Let I(t) = [, f(x, t)dx

Assumptions
1. fis holonomic

2. v has natural boundaries, i.e., for any i and a € W, [ d;a- f(x,t)dx = 0.
Data-structure
Assume we know generators of ann(f) in the algebra W, over K(t) and a derivation

map 0; : W,, — W, satisfying

O¢(Am) = gi\m + A0¢(m) for A € K(t) and m € W,
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Example of Input

Example

Let f(x,t) = %4 which is annihilated by

O+ 0x and  Ox(x —t).

Then f is represented by the ideal in Wj:
Wl (8X(X - t))a
and the derivation map 0; : Wi — Wj is defined by

0p(x?07) = —x*OPH1.
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Integral of the module W,/ ann(f)

Definition
The integral of the module M = W,/ ann(f) is

M/i&-/\/l ~  W,/(ann(f) + i@;Wn).

i=1

This yields the following commutative diagram:

W, f —— M
W, - f M

i OiW,-f = YL 0iM
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Integral of the module W,/ ann(f)

Definition
The integral of the module M = W,/ ann(f) is

M/OM ~ W,/(ann(f) + OW,).

This yields the following commutative diagram:

W, f ————— M
W, - f M
ow, - f = oM
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Algebraic analog of creative telescoping

Recall: creative telescoping
Look for a LHS such that there exists functions g1,...,g, € W, - f satisfying

Cf(x - i8ilX,
az(t)w+--.+a0(t)f(x,t):§:‘%‘gxit).

i=1

Algebraic formulation
Find coefficients ap, ..., ay € K(t) satisfying

a(£)dL(1) + - - + ao(t) € ann(f) + W,
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Computing in the quotient M/OM

Recall M/OM ~ W, /(ann(f) + dW,,).
Theorem (Kashiwara)

If f is holonomic, M/&M is a finite-dimensional vector space.

Difficulties:
e ann(f)+ OW, is the sum of a left and a right module = no module structure
® Even though M/&M is finite-dimensional, W,, and ann(f) + &W,, are not!
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Takayama's algorithm
¢" Work in W, by increasing degree:

Fo= P K-x"9°
lal+]81<q

Takayama's algorithm 1990 (without parameters)

Fix g and approximate the quotient W,/(ann(f) + 8W,) by
Fq/(ann(f) N Fq + 0Fg-1)

which is a quotient of two finite-dimensional K(t)-vector spaces.

Termination criterion
A bound on g to get a basis of M/OM can be deduced from the roots of the
b-function (Oaku-Takayama 1997). However, it is costly to compute.
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Reduction-based creative telescoping
Goal: Construct a K(t)-linear map [.]: W, = W, s.t.
® a—[a] € ann(f) + W, (reduction)

e [a] = 0iff a € ann(f) + OW, (normal form)
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Reduction-based creative telescoping
Goal: Construct a K(t)-linear map [.]: W, = W, s.t.
® a—[a] € ann(f) + W, (reduction)

e [a] = 0iff a € ann(f) + OW, (normal form)

Creative telescoping algorithm

=

po < [1]; ¢+ 0

> while there is no K(t)-linear relation 3>¢_o \ip; = 0

3 Per1 < [O:(pe)]  # invariant: py = [(‘)ﬁ“(l)] mod ann(f) + dW,
l+—0+1

5 return Y5 \;0)

N

© Always terminates as M/OM is finite-dimensional!
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"Naive" reduction

" Use more structure of ann(f) + W,
Reduction procedure [.] : W, — W,

1 repeat

2 a<+ a mod oW,

3 a< a mod ann(f)

4 until no term in a can be further reduced

5 return a

The reduction [.] does not reduce all ann(f) + W, to zero
© But dim([ann(f) + W,] N W) < dim((ann(f) + dW,) N Ws9)

21/30



Critical pairs
What does [ann(f) + W] look like ?
It is generated by terms a + d with It(a) = —It(d) and a € ann(f),d € W,
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Critical pairs
What does [ann(f) + W] look like ?
It is generated by terms a + d with It(a) = —It(d) and a € ann(f),d € W,
Example
Take f = eX’27° a Grobner basis of ann(f) for grevlex(x, y, z) > grevlex(dy, 0y, 0;) is

2£_6X7 3L2+aY7 Lz_az
42°0, + 2z — 92, xOyx — 220,
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Critical pairs
What does [ann(f) + W] look like ?
It is generated by terms a + d with It(a) = —It(d) and a € ann(f),d € W,

Example

Take f = eX’27° a Grobner basis of ann(f) for grevlex(x, y, z) > grevlex(dy, 0y, 0;) is

2£_6X7 3L2+aY7 Lz_az
42°0, + 2z — 92, xOyx — 220,

For example z is irreducible by [.] but

z= —%(4z2az +2z - 92) + %(4azz2 )

€ann(f) coW, 22 /30



The reduction [.],,

[ann(f) + @W,] may not be a finite-dimensional vector space
Fix a monomial order < on W, and let  be a monomial of W,,.

~» Compute instead a basis of

E<, ={la+d] | a € ann(f),d € W, max(Im(a), Im(d)) <n}
={[a] | a € ann(f),Im(a) < n}

Critical pair criterion
Let a € ann(f). If there exists b € ann(f) and i s.t. Im(a) = Im(9;b), then [a] € E_,.
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The reduction [.],,

Algorithm for computing Ex,

1 B+ 0

2> for each monomial ' <7 in Im(ann(f)) NIm(8W,)
3 if there exists / and b € ann(f) s.t. ' = Im(9;b)
4 continue

5 pick a € ann(f) s.t. Im(a) =7/
6 B+ BU{[a]}

7 return Echelon(B)
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The reduction [.],,

Algorithm for computing Ex,

1 B+ 0

2> for each monomial ' <7 in Im(ann(f)) NIm(8W,)
3 if there exists / and b € ann(f) s.t. ' = Im(9;b)
4 continue

5 pick a € ann(f) s.t. Im(a) =7/
6 B+ BU{[a]}

7 return Echelon(B)

Define: [a], := [a] mod Eg,
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How to choose n ?
The reduction [.],, does not compute a normal form.

~» Find a finite-dimensional vector space stable under [0¢( . )]s.

Confinement

A confinement (7, B) for 0; is a monomial 7 and a set of monomials B such that
1. 1e B,
2. the support of [0¢(m)],, is included in B for any m € B.

" This property is only about monomials, not coefficients!
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Computation of a confinement
An algorithm when < is a total degree order
1 g+1
2 1 < largest monomial of degree g
3 Q+1,B+ @
4 while Q\ B# @

5 m <— an element of Q\ B
6 if degm > q

7 g+—qg+1

8 goto line 2

9 Q + QU supp([0:(m)];)
10 B+ BU{m}
11 return (n, B)
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Final algorithm

Creative telescoping algorithm

1 7,_ < compute a confinement for O;

2 po 1]y €40

5 while there is no K(t)-linear relation -¢_o Aipi = 0

4 Pe+1 < [Ot(pe)]ly,  # invariant: py = [0:72(1)], mod ann(f) + &W,
5 l+—0+1

6 return Y5 \;0i

© Always terminates even though [.],, is not a normal form.

© The returned LDE may not be of minimal order.
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Application: counting k-regular graphs
k-regular graph: every vertex has degree k

Problem statement

c,(,k): number of k-regular graphs on n vertices.

X (k)
Goal: compute a LDE for > C,';T t" for fixed k
n=0

Petersen’s graph is 3-regular
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Application: counting k-regular graphs
k-regular graph: every vertex has degree k

Problem statement

(k)

Cn
x (k)

Goal: compute a LDE for > C,’;T t" for fixed k
n=0

: number of k-regular graphs on n vertices.

Petersen’s graph is 3-regular
Previous work
Read (1959): up to k =3
® McKay, Wormald (=~ 1959): k =4
® Chyzak, Mishna, Salvy (2005): k = 4 using C.T.}
A 4-regular graph ® Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.}

Ut is actually a variant of creative telescoping for scalar products of symmetric functions
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Application: counting k-regular graphs
~~ Building on Chyzak-Mishna-Salvy (2005) we obtained

where F is a series in K[[x]][x"1]((t)) implicitly represented by an ideal
I € K(t)[x](O¢, Ox) satisfying for any L € I, resy L(F) = 0.
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Application: counting k-regular graphs
~~ Building on Chyzak-Mishna-Salvy (2005) we obtained

where F is a series in K[[x]][x"1]((t)) implicitly represented by an ideal
I € K(t)[x](O¢, Ox) satisfying for any L € I, resy L(F) = 0.

Example

For k =2, I is generated by

(t—l)Xl—tal, Xo — t
2(t — 1)%0; — 92 +2(t — 1)%0, + t2(t — 1)

and we obtain the LDE
2(t — 1)d; + t°.
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Benchmarks

Because of the polynomial in the ideal /, no creative telescoping algorithms over
Q(t,x) work here!

k 2 3 4 5 6 7 8

Tak-Macaulay2 | 0.02s 1.7s  535s >90m - - -
Tak-Singular <ls <l1ls 25s >90m - - -
Ch/Mi-Maple? 0.04 0.08 0.2 1.96 52.3s 9h -

Our algo-Julial? | 7.2s 7.6s 8.7s 7.09s 8.5s  363s 7h28min

!Results available at https://files.inria.fr/chyzak/kregs/

2Code available at https://github.com/HBrochet/MultivariateCreativeTelescoping.jl
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