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A symbolic integration problem

Let I(t) =
*

dx dy dz
1− (1− xy)z − txyz(1− x)(1− y)(1− z) (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

t2(t2 − 34t + 1) ∂3I
∂t3 + 3t(2t2 − 51t + 1) ∂2I

∂t2 + (7t2 − 112t + 1) ∂I
∂t + (t − 5)I = 0.

With this LDE it is possible to

1. compute a series expansion,

2. evaluate the integral numerically,

3. prove identities involving I(t).
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Other examples of parametric integrals
The method of creative telescoping can deal with:

• orthogonal polynomials

An(p) =
∫ 1

−1

e−pxTn(x)√
1− x2

dx ,

• special functions

B(c) =
∫ ∞

0

∫ ∞

0
J1(x) J1(y) J2(c√xy)dxdy

ex+y ,

• semi-algebraic integration domains

Cn,s(r) =
∫∫

x2+y2≤r2

y s Jn(x)dxdy .
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Motivating examples of applications

• Computation of volumes of compact semi-algebraic sets up to a prescribed
precision 2−p (2019: Lairez-Mezzarobba-Safey El Din)

• Computation of the generating functions of some walks with small steps in the
quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)

• Computation of Feynman integrals for theoretical physics (e.g. 2015:
Ablinger-Behring-Blümlein-De Freitas-von Manteuffel-Schneider)

• Counting k-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)

NEW! Counting k-regular graphs for k up to 8 (at the end)
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The method of Creative Telescoping

Let I(t) =
∫ b

a f (x , t)dx .

Creative telescoping (univariate integration w.r.t x)
Find ℓ ∈N, a0, . . . , aℓ ∈ K(t) and a function g s.t.

aℓ(t)∂ℓf (x , t)
∂tℓ

+ · · ·+ a1(t)∂f (x , t)
∂t + a0(t)f (x , t) = ∂g(x , t)

∂x .

After integration, we obtain

aℓ(t)∂ℓI(t)
∂tℓ

+ · · ·+ a1(t)∂I(t)
∂t + a0I(t) = g(b, t)− g(a, t)︸                 ︷︷                 ︸

often zero

.
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The method of Creative Telescoping
Write x = x1, . . . , xn.

Creative telescoping (multivariate integration w.r.t x)
Find ℓ ∈N, a1, . . . , aℓ ∈ K(t) and functions g1, . . . , gn s.t.

aℓ(t)∂ℓf (x, t)
∂tℓ

+ · · ·+ a1(t)∂f (x, t)
∂t + a0(t)f (x, t) =

n∑
i=1

∂gi(x, t)
∂xi

.

Let I(t) =
∫

γ f (x, t)dx. After integration, we obtain

aℓ(t)∂ℓI(t)
∂tℓ

+ · · ·+ a1(t)∂I(t)
∂t + a0I(t) =

n∑
i=1

∫
γ

∂gi(x, t)
∂xi

dx.︸                    ︷︷                    ︸
0 assuming γ has natural boundaries
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Algebra of Differential Operators: Weyl algebra

The n-th Weyl algebra Wn over K is
• generated by the variables x1, . . . , xn, ∂1, . . . , ∂n and
• subject to the relations [∂i , xi ] = 1 and [xi , xj ] = [xi , ∂j ] = [∂i , ∂j ] = 0 for i , j

The homogeneous linear differential equation with polynomial coefficients

x1
∂2y

∂x1∂x2
+ (x2 + 1) ∂y

∂x1
+ y = 0

is represented in W2 by
x1∂1∂2 + (x2 + 1)∂1 + 1.
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Algebra of Differential Operators: rational Weyl algebra

The n-th rational Weyl algebra Rn over K(x1, . . . , xn) is
• generated by the variables ∂1, . . . , ∂n and
• subject to the relations [∂i , xi ] = 1 and [xi , xj ] = [xi , ∂j ] = [∂i , ∂j ] = 0 for i , j

The homogeneous linear differential equations with rational coefficients

x1
x2

2 + 1
∂2y

∂x1∂x2
+ (x2 + 1) ∂y

∂x1
+ y = 0

is represented in R2 by
x1

x2
2 + 1

∂1∂2 + (x2 + 1)∂1 + 1.
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D-finite functions
Definition
A function f is D-finite if for each ∂i it satisfies a LODE with polynomial coefficients.

Proposition
f is D-finite if and only if Rn/ annRn(f ) is a finite-dimensional vector space,
where annRn(f ) = {P ∈ Rn | P · f = 0}.

Example
The function f = J0(x − y) is D-finite as its annihilator is generated by

(x − y)∂2
x + ∂x + (x − y), ∂y + ∂x

which implies
Rn/ annRn(f ) ' Q(x , y)f ⊕Q(x , y)∂x · f .
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Holonomy
Holonomic module
A module Wn/S is holonomic if its module dimension is exactly n. Or equivalently if
for every choice of n + 1 variables I ⊂ {x1 . . . , xn, ∂1, . . . ∂n}, K〈I〉 ∩ S is non-empty.

Holonomic function
A function f is holonomic if the module Wn/ annWn(f ) is holonomic, where
annWn(f ) = {P ∈Wn | P · f = 0}.

Example

The same function f = J0(x − y) is also holonomic
as the dimension of Wn/ annWn(f ) is 2. A basis of
this quotient is given by the image of the monomials
xa∂b

x y c such that x∂2
x ∤ xa∂b

x .
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D-finiteness vs Holonomy

Theorem
A function is D-finite if and only if it is holonomic.

D-finiteness

Fast computation
Lacks expressivity
No general multivariate

integration algorithm known

Holonomy

Useful for proofs of existence and termination
Extends to holonomic distribution =⇒

allows integration over semi-algebraic sets
Slow computation

Today: Mixed approach
Operators with coefficients in Q(t)[x]
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Previous work (non-exhaustive)
Ansatz-based approaches (D-finite)
• Univariate integration of hyperexponential functions (Almkvist-Zeilberger 1990)
• Univariate integration of D-finite functions (Chyzak 2000)
• Fast heuristic for univariate integration of D-finite functions (Koutschan 2010)

Gröbner basis approaches (holonomy)
• Integration of holonomic functions (Takayama 1990,Oaku-Takayama 1997, Chyzak-Salvy 1998)

• Integration of holonomic functions over semi-algebraic sets (Oaku 2013)

Reduction-based approaches (D-finite)
• Univariate integration of bivariate rational functions (Bostan-Chen-Chyzak-Li 2010)
• Multivariate integration of rational functions (Bostan-Lairez-Salvy 2013, Lairez 2016)
• Univariate integration of D-finite functions (van der Hoeven 2018,

Bostan-Chyzak-Lairez-Salvy 2018, Chen-Du-Kauers 2023)
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Input of the algorithm

Let I(t) =
∫

γ f (x, t)dx

Assumptions
1. f is holonomic
2. γ has natural boundaries, i.e., for any i and a ∈Wn,

∫
γ ∂ia · f (x, t)dx = 0.

Data-structure
Assume we know generators of ann(f ) in the algebra Wn over K(t) and a derivation
map ∂t : Wn →Wn satisfying

∂t(λm) = ∂λ

∂t m + λ∂t(m) for λ ∈ K(t) and m ∈Wn
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Example of Input

Example
Let f (x , t) = 1

x−t , which is annihilated by

∂t + ∂x and ∂x (x − t).

Then f is represented by the ideal in W1:

W1
(
∂x (x − t)

)
,

and the derivation map ∂t : W1 →W1 is defined by

∂t(xa∂b
x ) = −xa∂b+1

x .
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Integral of the module Wn/ ann(f )
Definition
The integral of the module M = Wn/ ann(f ) is

M/
n∑

i=1
∂iM ' Wn/(ann(f ) +

n∑
i=1

∂iWn).

This yields the following commutative diagram:

Wn · f M

Wn · f∑n
i=1 ∂iWn · f

M∑n
i=1 ∂iM

'

'
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Algebraic analog of creative telescoping

Recall: creative telescoping
Look for a LHS such that there exists functions g1, . . . , gn ∈Wn · f satisfying

aℓ(t)∂ℓf (x, t)
∂tℓ

+ · · ·+ a0(t)f (x, t) =
n∑

i=1

∂igi(x, t)
∂xi

.

Algebraic formulation
Find coefficients a0, . . . , aℓ ∈ K(t) satisfying

aℓ(t)∂ℓ
t (1) + · · ·+ a0(t) ∈ ann(f ) + ∂Wn.
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Computing in the quotient M/∂M

Recall M/∂M 'Wn/(ann(f ) + ∂Wn).

Theorem (Kashiwara)
If f is holonomic, M/∂M is a finite-dimensional vector space.

Difficulties:
• ann(f ) + ∂Wn is the sum of a left and a right module =⇒ no module structure
• Even though M/∂M is finite-dimensional, Wn and ann(f ) + ∂Wn are not!
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Takayama’s algorithm
Work in Wn by increasing degree:

Fq =
⊕

|α|+|β|≤q
K · xα∂β.

Takayama’s algorithm 1990 (without parameters)
Fix q and approximate the quotient Wn/(ann(f ) + ∂Wn) by

Fq/(ann(f ) ∩ Fq + ∂Fq−1)

which is a quotient of two finite-dimensional K(t)-vector spaces.

Termination criterion
A bound on q to get a basis of M/∂M can be deduced from the roots of the
b-function (Oaku-Takayama 1997). However, it is costly to compute.
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Reduction-based creative telescoping
Goal: Construct a K(t)-linear map [ . ] : Wn →Wn s.t.
• a − [a] ∈ ann(f ) + ∂Wn (reduction)

• [a] = 0 iff a ∈ ann(f ) + ∂Wn (normal form)

Creative telescoping algorithm

1 p0 ← [1]; ℓ← 0
2 while there is no K(t)-linear relation

∑ℓ
i=0 λipi = 0

3 pℓ+1 ← [∂t(pℓ)] # invariant: pℓ ≡ [∂ℓ+1
t (1)] mod ann(f ) + ∂Wn

4 ℓ← ℓ + 1
5 return

∑ℓ
i=0 λi∂

i
t

Always terminates as M/∂M is finite-dimensional!
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"Naïve" reduction

Use more structure of ann(f ) + ∂Wn

Reduction procedure [.] : Wn 7→Wn

1 repeat
2 a← a mod ∂Wn

3 a← a mod ann(f )
4 until no term in a can be further reduced
5 return a

The reduction [.] does not reduce all ann(f ) + ∂Wn to zero

But dim([ann(f ) + ∂Wn] ∩W ≤q
n )� dim((ann(f ) + ∂Wn) ∩W ≤q

n )

21 / 30



Critical pairs
What does [ann(f ) + ∂Wn] look like ?
It is generated by terms a + d with lt(a) = − lt(d) and a ∈ ann(f ), d ∈ ∂Wn

Example

Take f = ex2z−y3 , a Gröbner basis of ann(f ) for grevlex(x , y , z) > grevlex(∂x , ∂y , ∂z) is

2xz − ∂x , 3y2 + ∂y , x2 − ∂z

4z2∂z + 2z − ∂2
x , x∂x − 2z∂z

For example z is irreducible by [.] but

z = −1
6(4z2∂z + 2z − ∂2

x )︸                        ︷︷                        ︸
∈ann(f )

+ 1
6(4∂zz2 − ∂2

x )︸               ︷︷               ︸
∈∂Wn
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The reduction [.]η

[ann(f ) + ∂Wn] may not be a finite-dimensional vector space

Fix a monomial order ≼ on Wn and let η be a monomial of Wn.

⇝ Compute instead a basis of

E≼η B{[a + d ] | a ∈ ann(f ), d ∈ ∂Wn, max(lm(a), lm(d)) ≼ η}
={[a] | a ∈ ann(f ), lm(a) ≼ η}

Critical pair criterion
Let a ∈ ann(f ). If there exists b ∈ ann(f ) and i s.t. lm(a) = lm(∂ib), then [a] ∈ E≺η.
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The reduction [.]η

Algorithm for computing E≼η

1 B ← ∅
2 for each monomial η′ ≼ η in lm(ann(f )) ∩ lm(∂Wn)
3 if there exists i and b ∈ ann(f ) s.t. η′ = lm(∂ib)
4 continue
5 pick a ∈ ann(f ) s.t. lm(a) = η′

6 B ← B ∪ {[a]}
7 return Echelon(B)

Define: [a]η B [a] mod E≼η
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How to choose η ?

The reduction [ . ]η does not compute a normal form.

⇝ Find a finite-dimensional vector space stable under [∂t( . )]η.

Confinement
A confinement (η, B) for ∂t is a monomial η and a set of monomials B such that

1. 1 ∈ B;
2. the support of [∂t(m)]η is included in B for any m ∈ B.

This property is only about monomials, not coefficients!
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Computation of a confinement
An algorithm when ≼ is a total degree order

1 q ← 1
2 η ← largest monomial of degree q
3 Q ← 1, B ← ∅
4 while Q \ B , ∅
5 m← an element of Q \ B
6 if deg m > q
7 q ← q + 1
8 goto line 2
9 Q ← Q ∪ supp([∂t(m)]η)

10 B ← B ∪ {m}
11 return (η, B)
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Final algorithm

Creative telescoping algorithm

1 η, _← compute a confinement for ∂t

2 p0 ← [1]η; ℓ← 0
3 while there is no K(t)-linear relation

∑ℓ
i=0 λipi = 0

4 pℓ+1 ← [∂t(pℓ)]η # invariant: pℓ ≡ [∂ℓ+1
t (1)]η mod ann(f ) + ∂Wn

5 ℓ← ℓ + 1
6 return

∑ℓ
i=0 λi∂

i
t

Always terminates even though [.]η is not a normal form.

The returned LDE may not be of minimal order.
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Application: counting k-regular graphs
k-regular graph: every vertex has degree k

Problem statement

c(k)
n : number of k-regular graphs on n vertices.

Goal: compute a LDE for
∞∑

n=0

c(k)
n
n! tn for fixed k

Petersen’s graph is 3-regular

A 4-regular graph

Previous work
• Read (1959): up to k = 3
• McKay, Wormald (≈ 1959): k = 4
• Chyzak, Mishna, Salvy (2005): k = 4 using C.T.1

• Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.1
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1It is actually a variant of creative telescoping for scalar products of symmetric functions
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Application: counting k-regular graphs
⇝ Building on Chyzak-Mishna-Salvy (2005) we obtained

∞∑
n=0

c(k)
n
n! tn = resx F (t, x)

where F is a series in K[[x]][x−1]((t)) implicitly represented by an ideal
I ⊂ K(t)[x]〈∂t , ∂x〉 satisfying for any L ∈ I, resx L(F ) = 0.

Example
For k = 2, I is generated by

(t − 1)x1 − t∂1, x2 − t
2(t − 1)2∂t − ∂2

1 + 2(t − 1)2∂2 + t2(t − 1)

and we obtain the LDE
2(t − 1)dt + t2.
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Benchmarks
Because of the polynomial in the ideal I, no creative telescoping algorithms over
Q(t, x) work here!

k 2 3 4 5 6 7 8

Tak-Macaulay2 0.02s 1.7s 535s >90m - - -

Tak-Singular <1s <1s 25s >90m - - -

Ch/Mi-Maple1 0.04 0.08 0.2 1.96 52.3s 9h -

Our algo-Julia12 7.2s 7.6s 8.7s 7.9s 8.5s 363s 7h28min

1Results available at https://files.inria.fr/chyzak/kregs/
2Code available at https://github.com/HBrochet/MultivariateCreativeTelescoping.jl
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