Faster Multivariate Integration in D-modules

Hadrien Brochet

Joint work with Frédéric Chyzak and Pierre Lairez

Innia

Pascaline Seminar

June 5, 2025

https://arxiv.org/abs/2504.12724

A symbolic integration problem

Let
$$I(t) = \iiint \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3}I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2}I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0$$

A symbolic integration problem

Let
$$I(t) = \iiint \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for *I*:

$$t^{2}(t^{2} - 34t + 1)\frac{\partial^{3}I}{\partial t^{3}} + 3t(2t^{2} - 51t + 1)\frac{\partial^{2}I}{\partial t^{2}} + (7t^{2} - 112t + 1)\frac{\partial I}{\partial t} + (t - 5)I = 0$$

With this LDE it is possible to

- 1. compute a series expansion,
- 2. evaluate the integral numerically,
- 3. prove identities involving I(t).

Other examples of parametric integrals

The method of creative telescoping can deal with:

• orthogonal polynomials

$$A_n(p) = \int_{-1}^1 \frac{e^{-px}T_n(x)}{\sqrt{1-x^2}}dx,$$

• special functions

$$\mathsf{B}(c) = \int_0^\infty \int_0^\infty \mathsf{J}_1(x) \, \mathsf{J}_1(y) \, \mathsf{J}_2(c \, \sqrt{xy}) rac{dxdy}{e^{x+y}},$$

• semi-algebraic integration domains

$$C_{n,s}(r) = \iint_{x^2+y^2 \leq r^2} y^s \operatorname{J}_n(x) dx dy.$$

Motivating examples of applications

- Computation of volumes of compact semi-algebraic sets up to a prescribed precision 2^{-p} (2019: Lairez-Mezzarobba-Safey El Din)
- Computation of the generating functions of some walks with small steps in the quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)
- Computation of Feynman integrals for theoretical physics (e.g. 2015: Ablinger-Behring-Blümlein-De Freitas-von Manteuffel-Schneider)
- Counting k-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)

Motivating examples of applications

- Computation of volumes of compact semi-algebraic sets up to a prescribed precision 2^{-p} (2019: Lairez-Mezzarobba-Safey El Din)
- Computation of the generating functions of some walks with small steps in the quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)
- Computation of Feynman integrals for theoretical physics (e.g. 2015: Ablinger-Behring-Blümlein-De Freitas-von Manteuffel-Schneider)
- Counting k-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)

NEW! Counting *k*-regular graphs for *k* up to 8 (at the end)

The method of Creative Telescoping

Let $I(t) = \int_a^b f(x, t) dx$.

Creative telescoping (univariate integration w.r.t x) Find $\ell \in \mathbb{N}, a_0, \dots, a_\ell \in \mathbb{K}(t)$ and a function g s.t.

$$a_\ell(t)rac{\partial^\ell f(x,t)}{\partial t^\ell}+\cdots+a_1(t)rac{\partial f(x,t)}{\partial t}+a_0(t)f(x,t)=rac{\partial g(x,t)}{\partial x}.$$

After integration, we obtain

$$a_{\ell}(t)\frac{\partial^{\ell}I(t)}{\partial t^{\ell}} + \dots + a_{1}(t)\frac{\partial I(t)}{\partial t} + a_{0}I(t) = \underbrace{g(b,t) - g(a,t)}_{\text{often zero}}$$

The method of Creative Telescoping

Write $\mathbf{x} = x_1, \ldots, x_n$.

Creative telescoping (multivariate integration w.r.t x)

Find $\ell \in \mathbb{N}, a_1, \dots, a_\ell \in \mathbb{K}(t)$ and functions g_1, \dots, g_n s.t.

$$a_\ell(t)rac{\partial^\ell f(\mathbf{x},t)}{\partial t^\ell}+\cdots+a_1(t)rac{\partial f(\mathbf{x},t)}{\partial t}+a_0(t)f(\mathbf{x},t)=\sum_{i=1}^nrac{\partial g_i(\mathbf{x},t)}{\partial x_i}.$$

Let $I(t) = \int_{\gamma} f(\mathbf{x}, t) d\mathbf{x}$. After integration, we obtain

$$a_{\ell}(t)\frac{\partial^{\ell}I(t)}{\partial t^{\ell}} + \dots + a_{1}(t)\frac{\partial I(t)}{\partial t} + a_{0}I(t) = \sum_{i=1}^{n} \int_{\gamma} \frac{\partial g_{i}(\mathbf{x}, t)}{\partial x_{i}} d\mathbf{x}.$$
0 assuming γ has natural boundaries

Algebra of Differential Operators: Weyl algebra

The *n*-th Weyl algebra W_n over $\mathbb K$ is

- generated by the variables $x_1, \ldots, x_n, \partial_1, \ldots, \partial_n$ and
- subject to the relations $[\partial_i, x_i] = 1$ and $[x_i, x_j] = [x_i, \partial_j] = [\partial_i, \partial_j] = 0$ for $i \neq j$

The homogeneous linear differential equation with polynomial coefficients

$$x_1\frac{\partial^2 y}{\partial x_1\partial x_2} + (x^2 + 1)\frac{\partial y}{\partial x_1} + y = 0$$

is represented in W_2 by

$$x_1\partial_1\partial_2 + (x^2+1)\partial_1 + 1.$$

Algebra of Differential Operators: rational Weyl algebra

The *n*-th rational Weyl algebra R_n over $\mathbb{K}(x_1, \ldots, x_n)$ is

- generated by the variables $\partial_1, \ldots, \partial_n$ and
- subject to the relations $[\partial_i, x_i] = 1$ and $[x_i, x_j] = [x_i, \partial_j] = [\partial_i, \partial_j] = 0$ for $i \neq j$

The homogeneous linear differential equations with rational coefficients

$$\frac{x_1}{x_2^2+1}\frac{\partial^2 y}{\partial x_1 \partial x_2} + (x^2+1)\frac{\partial y}{\partial x_1} + y = 0$$

is represented in R_2 by

$$\frac{x_1}{x_2^2+1}\partial_1\partial_2 + (x^2+1)\partial_1 + 1.$$

D-finite functions

Definition

A function f is D-finite if for each ∂_i it satisfies a LODE with polynomial coefficients.

Proposition

f is D-finite if and only if $R_n/\operatorname{ann}_{R_n}(f)$ is a finite-dimensional vector space, where $\operatorname{ann}_{R_n}(f) = \{P \in R_n \mid P \cdot f = 0\}.$

D-finite functions

Definition

A function f is D-finite if for each ∂_i it satisfies a LODE with polynomial coefficients.

Proposition

f is D-finite if and only if $R_n/\operatorname{ann}_{R_n}(f)$ is a finite-dimensional vector space, where $\operatorname{ann}_{R_n}(f) = \{P \in R_n \mid P \cdot f = 0\}.$

Example

The function $f = J_0(x - y)$ is D-finite as its annihilator is generated by

$$(x-y)\partial_x^2 + \partial_x + (x-y), \qquad \partial_y + \partial_x$$

which implies

$$R_n/\operatorname{ann}_{R_n}(f)\simeq \mathbb{Q}(x,y)f\oplus \mathbb{Q}(x,y)\partial_x\cdot f.$$

Holonomy

Holonomic module

A module W_n/S is holonomic if its module dimension is exactly *n*. Or equivalently if for every choice of n + 1 variables $I \subset \{x_1 \dots, x_n, \partial_1, \dots, \partial_n\}$, $\mathbb{K}\langle I \rangle \cap S$ is non-empty.

Holonomic function

A function f is holonomic if the module $W_n / \operatorname{ann}_{W_n}(f)$ is holonomic, where $\operatorname{ann}_{W_n}(f) = \{P \in W_n \mid P \cdot f = 0\}.$

Holonomy

Holonomic module

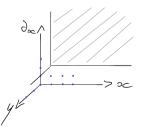
A module W_n/S is holonomic if its module dimension is exactly *n*. Or equivalently if for every choice of n + 1 variables $I \subset \{x_1 \dots, x_n, \partial_1, \dots, \partial_n\}$, $\mathbb{K}\langle I \rangle \cap S$ is non-empty.

Holonomic function

A function f is holonomic if the module $W_n / \operatorname{ann}_{W_n}(f)$ is holonomic, where $\operatorname{ann}_{W_n}(f) = \{P \in W_n \mid P \cdot f = 0\}.$

Example

The same function $f = J_0(x - y)$ is also holonomic as the dimension of $W_n / \operatorname{ann}_{W_n}(f)$ is 2. A basis of this quotient is given by the image of the monomials $x^a \partial_x^b y^c$ such that $x \partial_x^2 \nmid x^a \partial_x^b$.



D-finiteness vs Holonomy

Theorem

A function is D-finite if and only if it is holonomic.

D-finiteness

Fast computation
 Lacks expressivity
 No general multivariate integration algorithm known

Holonomy

Useful for proofs of existence and termination
 Extends to holonomic distribution ⇒ allows integration over semi-algebraic sets
 Slow computation

Today: Mixed approach

Operators with coefficients in $\mathbb{Q}(t)[\mathbf{x}]$

Previous work (non-exhaustive)

Ansatz-based approaches (D-finite)

- Univariate integration of hyperexponential functions (Almkvist-Zeilberger 1990)
- Univariate integration of D-finite functions (Chyzak 2000)
- Fast heuristic for univariate integration of D-finite functions (Koutschan 2010)

Gröbner basis approaches (holonomy)

- Integration of holonomic functions (Takayama 1990,Oaku-Takayama 1997, Chyzak-Salvy 1998)
- Integration of holonomic functions over semi-algebraic sets (Oaku 2013)

Reduction-based approaches (D-finite)

- Univariate integration of bivariate rational functions (Bostan-Chen-Chyzak-Li 2010)
- Multivariate integration of rational functions (Bostan-Lairez-Salvy 2013, Lairez 2016)
- Univariate integration of D-finite functions (van der Hoeven 2018, Bostan-Chyzak-Lairez-Salvy 2018, Chen-Du-Kauers 2023)

Input of the algorithm

Let $I(t) = \int_{\gamma} f(\mathbf{x}, t) d\mathbf{x}$

Assumptions

1. f is holonomic

2. γ has natural boundaries, i.e., for any *i* and $a \in W_n$, $\int_{\gamma} \partial_i a \cdot f(\mathbf{x}, t) d\mathbf{x} = 0$.

Input of the algorithm

Let $I(t) = \int_{\gamma} f(\mathbf{x}, t) d\mathbf{x}$

Assumptions

1. f is holonomic

2. γ has natural boundaries, i.e., for any *i* and $a \in W_n$, $\int_{\gamma} \partial_i a \cdot f(\mathbf{x}, t) d\mathbf{x} = 0$.

Data-structure

Assume we know generators of $\operatorname{ann}(f)$ in the algebra W_n over $\mathbb{K}(t)$ and a derivation map $\partial_t : W_n \to W_n$ satisfying

$$\partial_t(\lambda m) = rac{\partial \lambda}{\partial t}m + \lambda \partial_t(m)$$
 for $\lambda \in \mathbb{K}(t)$ and $m \in W_n$

Example of Input

Example

Let $f(x, t) = \frac{1}{x-t}$, which is annihilated by

 $\partial_t + \partial_x$ and $\partial_x(x-t)$.

Then f is represented by the ideal in W_1 :

 $W_1(\partial_x(x-t)),$

and the derivation map $\partial_t: \mathcal{W}_1
ightarrow \mathcal{W}_1$ is defined by

$$\partial_t(x^a\partial_x^b)=-x^a\partial_x^{b+1}.$$

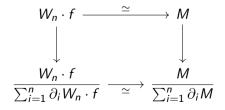
Integral of the module $W_n/\operatorname{ann}(f)$

Definition

The integral of the module $M = W_n / \operatorname{ann}(f)$ is

$$M/\sum_{i=1}^n \partial_i M \simeq W_n/(\operatorname{ann}(f) + \sum_{i=1}^n \partial_i W_n).$$

This yields the following commutative diagram:



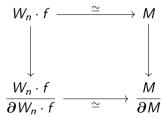
Integral of the module $W_n/\operatorname{ann}(f)$

Definition

The integral of the module $M = W_n / \operatorname{ann}(f)$ is

$$M/\partial M \simeq W_n/(\operatorname{ann}(f) + \partial W_n).$$

This yields the following commutative diagram:



Algebraic analog of creative telescoping

Recall: creative telescoping

Look for a LHS such that there exists functions $g_1, \ldots, g_n \in W_n \cdot f$ satisfying

$$a_\ell(t)rac{\partial^\ell f(\mathbf{x},t)}{\partial t^\ell}+\cdots+a_0(t)f(\mathbf{x},t)=\sum_{i=1}^nrac{\partial_i g_i(\mathbf{x},t)}{\partial x_i}.$$

Algebraic formulation

Find coefficients $a_0, \ldots, a_\ell \in \mathbb{K}(t)$ satisfying

$$a_\ell(t)\partial_t^\ell(1)+\cdots+a_0(t)\in \operatorname{ann}(f)+\partial W_n.$$

Computing in the quotient $M/\partial M$

Recall $M/\partial M \simeq W_n/(\operatorname{ann}(f) + \partial W_n)$.

Theorem (Kashiwara)

If f is holonomic, $M/\partial M$ is a finite-dimensional vector space.

Difficulties:

- $\operatorname{ann}(f) + \partial W_n$ is the sum of a left and a right module \implies no module structure
- Even though $M/\partial M$ is finite-dimensional, W_n and $\operatorname{ann}(f) + \partial W_n$ are not!

Takayama's algorithm

 \forall Work in W_n by increasing degree:

$$F_q = igoplus_{|lpha|+|eta|\leq q} \mathbb{K} \cdot \mathbf{x}^{lpha} \partial^{eta}.$$

Takayama's algorithm 1990 (without parameters)

Fix q and approximate the quotient $W_n/(\operatorname{ann}(f) + \partial W_n)$ by

$$F_q/(\operatorname{ann}(f) \cap F_q + \partial F_{q-1})$$

which is a quotient of two finite-dimensional $\mathbb{K}(t)$ -vector spaces.

Termination criterion

A bound on q to get a basis of $M/\partial M$ can be deduced from the roots of the *b*-function (Oaku-Takayama 1997). However, it is costly to compute.

Reduction-based creative telescoping

Goal: Construct a $\mathbb{K}(t)$ -linear map $[\,.\,]: W_n \to W_n$ s.t.

• $a - [a] \in ann(f) + \partial W_n$ (reduction)

•
$$[a] = 0$$
 iff $a \in \operatorname{ann}(f) + \partial W_n$

(normal form)

Reduction-based creative telescoping

Goal: Construct a $\mathbb{K}(t)$ -linear map $[\,.\,]: W_n \to W_n$ s.t.

• $a - [a] \in \operatorname{ann}(f) + \partial W_n$ (reduction)

•
$$[a] = 0$$
 iff $a \in ann(f) + \partial W_n$

Creative telescoping algorithm

1
$$p_0 \leftarrow [1]; \ \ell \leftarrow 0$$

- 2 while there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^\ell \lambda_i p_i = 0$
- 3 $p_{\ell+1} \leftarrow [\partial_t(p_\ell)] \# \text{ invariant: } p_\ell \equiv [\partial_t^{\ell+1}(1)] \mod \operatorname{ann}(f) + \partial W_n$

4
$$\ell \leftarrow \ell + 1$$

5 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$

• Always terminates as $M/\partial M$ is finite-dimensional!

(normal form)

"Naïve" reduction

```
\forall Use more structure of ann(f) + \partial W_n
```

```
Reduction procedure [.]: W_n \mapsto W_n
```

1 repeat

- $a \leftarrow a \mod \partial W_n$
- $a \leftarrow a \mod ann(f)$
- 4 **until** no term in *a* can be further reduced
- 5 return a

□ The reduction [.] does not reduce all ann(f) + ∂W_n to zero
 □ But dim([ann(f) + ∂W_n] ∩ W_n^{≤q}) ≪ dim((ann(f) + ∂W_n) ∩ W_n^{≤q})

Critical pairs

What does $[\operatorname{ann}(f) + \partial W_n]$ look like ?

It is generated by terms a + d with lt(a) = -lt(d) and $a \in ann(f), d \in \partial W_n$

Critical pairs

What does $[\operatorname{ann}(f) + \partial W_n]$ look like ?

It is generated by terms a + d with $\mathsf{lt}(a) = -\mathsf{lt}(d)$ and $a \in \mathsf{ann}(f), d \in \partial \mathcal{W}_n$

Example

Take $f = e^{x^2 z - y^3}$, a Gröbner basis of ann(f) for grevlex(x, y, z) > grevlex($\partial_x, \partial_y, \partial_z$) is

$$\frac{2\underline{x}\underline{z} - \partial_x, \quad 3\underline{y}^2 + \partial_y, \quad \underline{x}^2 - \partial_z}{4\underline{z}^2\partial_{\underline{z}} + 2z - \partial_x^2, \quad \underline{x}\partial_x - 2z\partial_z}$$

Critical pairs

What does $[\operatorname{ann}(f) + \partial W_n]$ look like ?

It is generated by terms a + d with $\mathsf{lt}(a) = -\mathsf{lt}(d)$ and $a \in \mathsf{ann}(f), d \in \partial \mathcal{W}_n$

Example

Take $f = e^{x^2 z - y^3}$, a Gröbner basis of ann(f) for grevlex $(x, y, z) > \text{grevlex}(\partial_x, \partial_y, \partial_z)$ is

$$\frac{2\underline{x}\underline{z}-\partial_x, \quad 3\underline{y}^2+\partial_y, \quad \underline{x}^2-\partial_z}{4\underline{z}^2\partial_z+2z-\partial_x^2, \quad \underline{x}\partial_x-2z\partial_z}$$

For example z is irreducible by [.] but

$$z = \underbrace{-\frac{1}{6}(4\underline{z^2}\partial_z + 2z - \partial_x^2)}_{\in ann(f)} + \underbrace{\frac{1}{6}(4\underline{\partial_z z^2} - \partial_x^2)}_{\in \partial W_n}$$

The reduction $[.]_{\eta}$

▲ $[\operatorname{ann}(f) + \partial W_n]$ may not be a finite-dimensional vector space Fix a monomial order ≤ on W_n and let η be a monomial of W_n . → Compute instead a basis of

$$E_{\leq \eta} \coloneqq \{ [a+d] \mid a \in \operatorname{ann}(f), d \in \partial W_n, \max(\operatorname{Im}(a), \operatorname{Im}(d)) \leq \eta \} \\ = \{ [a] \mid a \in \operatorname{ann}(f), \operatorname{Im}(a) \leq \eta \}$$

Critical pair criterion

Let $a \in \operatorname{ann}(f)$. If there exists $b \in \operatorname{ann}(f)$ and i s.t. $\operatorname{Im}(a) = \operatorname{Im}(\partial_i b)$, then $[a] \in E_{\prec \eta}$.

The reduction $[.]_{\eta}$

Algorithm for computing $E_{\leq \eta}$

- 1 $B \leftarrow \emptyset$
- ² for each monomial $\eta' \leq \eta$ in $\operatorname{Im}(\operatorname{ann}(f)) \cap \operatorname{Im}(\partial W_n)$
- if there exists i and $b \in ann(f)$ s.t. $\eta' = Im(\partial_i b)$

continue

5 pick
$$a \in ann(f)$$
 s.t. $lm(a) = \eta$

- 6 $B \leftarrow B \cup \{[a]\}$
- 7 return Echelon(B)

The reduction $[.]_{\eta}$

Algorithm for computing $E_{\leq \eta}$

- 1 $B \leftarrow \emptyset$
- 2 for each monomial $\eta' \leq \eta$ in $\operatorname{Im}(\operatorname{ann}(f)) \cap \operatorname{Im}(\partial W_n)$
- if there exists i and $b \in ann(f)$ s.t. $\eta' = Im(\partial_i b)$

4 continue

5 pick
$$a \in ann(f)$$
 s.t. $lm(a) = \eta$

- 6 $B \leftarrow B \cup \{[a]\}$
- 7 return Echelon(B)

Define: $[a]_{\eta} \coloneqq [a] \mod E_{\leq \eta}$

How to choose η ?

 ${f A}$ The reduction $[\,.\,]_\eta$ does not compute a normal form.

 \rightsquigarrow Find a finite-dimensional vector space stable under $[\partial_t(.)]_{\eta}$.

Confinement

A confinement (η,B) for ∂_t is a monomial η and a set of monomials B such that

- **1**. $1 \in B$;
- 2. the support of $[\partial_t(m)]_{\eta}$ is included in B for any $m \in B$.

☆ This property is only about monomials, not coefficients!

Computation of a confinement

An algorithm when \leq is a total degree order

- 1 $q \leftarrow 1$
- ² $\eta \leftarrow$ largest monomial of degree q
- 3 $Q \leftarrow 1, B \leftarrow \emptyset$
- 4 while $Q \setminus B \neq \emptyset$
- 5 $m \leftarrow$ an element of $Q \setminus B$
- 6 if deg m > q
- 7 $q \leftarrow q+1$
- 8 goto line 2
- 9 $Q \leftarrow Q \cup \operatorname{supp}([\partial_t(m)]_\eta)$
- 10 $B \leftarrow B \cup \{m\}$
- 11 return (η, B)

Final algorithm

Creative telescoping algorithm

- 1 $\eta, _ \leftarrow$ compute a confinement for ∂_t
- 2 $p_0 \leftarrow [1]_\eta; \ \ell \leftarrow 0$
- ³ while there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^{\ell} \lambda_i p_i = 0$
- 4 $p_{\ell+1} \leftarrow [\partial_t(p_\ell)]_\eta$ # invariant: $p_\ell \equiv [\partial_t^{\ell+1}(1)]_\eta$ mod $\operatorname{ann}(f) + \partial W_n$ 5 $\ell \leftarrow \ell + 1$
- 6 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$

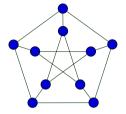
 \bigcirc Always terminates even though $[.]_{\eta}$ is not a normal form.

C The returned LDE may not be of minimal order.

k-regular graph: every vertex has degree k

Problem statement

 $c_n^{(k)}$: number of k-regular graphs on n vertices. Goal: compute a LDE for $\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n$ for fixed k

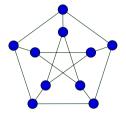


Petersen's graph is 3-regular

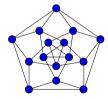
k-regular graph: every vertex has degree k

Problem statement

 $c_n^{(k)}$: number of k-regular graphs on n vertices. Goal: compute a LDE for $\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n$ for fixed k



Petersen's graph is 3-regular



A 4-regular graph

Previous work

- Read (1959): up to k = 3
- McKay, Wormald (pprox 1959): k=4
- Chyzak, Mishna, Salvy (2005): k = 4 using C.T.¹
- Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.¹

¹It is actually a variant of creative telescoping for scalar products of symmetric functions

 \rightsquigarrow Building on Chyzak-Mishna-Salvy (2005) we obtained

$$\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$$

where *F* is a series in $\mathbb{K}[[\mathbf{x}]][\mathbf{x}^{-1}]((t))$ implicitly represented by an ideal $I \subset \mathbb{K}(t)[\mathbf{x}]\langle \partial_t, \partial_{\mathbf{x}} \rangle$ satisfying for any $L \in I$, res_x L(F) = 0.

 \rightsquigarrow Building on Chyzak-Mishna-Salvy (2005) we obtained

$$\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$$

where *F* is a series in $\mathbb{K}[[\mathbf{x}]][\mathbf{x}^{-1}]((t))$ implicitly represented by an ideal $I \subset \mathbb{K}(t)[\mathbf{x}]\langle \partial_t, \partial_{\mathbf{x}} \rangle$ satisfying for any $L \in I$, res_x L(F) = 0.

Example

For k = 2, I is generated by

$$(t-1)x_1 - t\partial_1, \qquad x_2 - t$$

 $2(t-1)^2\partial_t - \partial_1^2 + 2(t-1)^2\partial_2 + t^2(t-1)$

and we obtain the LDE

$$2(t-1)d_t+t^2$$

Benchmarks

Because of the polynomial in the ideal *I*, no creative telescoping algorithms over $\mathbb{Q}(t, \mathbf{x})$ work here!

k	2	3	4	5	6	7	8
Tak-Macaulay2	0.02s	1.7s	535s	>90m	-	-	-
Tak-Singular	< 1s	< 1s	25s	>90m	-	-	-
${\sf Ch}/{\sf Mi}{\sf -}{\sf Maple}^1$	0.04	0.08	0.2	1.96	52.3s	9h	-
Our algo-Julia ¹²	7.2s	7.6s	8.7s	7.9s	8.5s	363s	7h28min

¹Results available at https://files.inria.fr/chyzak/kregs/

²Code available at https://github.com/HBrochet/MultivariateCreativeTelescoping.jl